Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 128: 155495, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471317

RESUMEN

BACKGROUND: Ginsenosides have received increased amounts of attention due to their ability to modulate the intestinal flora, which may subsequently alleviate alcoholic liver disease (ALD). The effects of ginseng fermentation solution (GFS) on the gut microbiota and metabolism in ALD patients have not been explored. PURPOSE: This research aimed to explore the regulatory effect of GFS on ALD both in vitro and in vivo. METHOD: This study assessed the anti-ALD efficacy of GFS using an LO2 cell model and a zebrafish model. Untargeted metabolomics was used for differentially abundant metabolite analysis, and high-throughput 16S rRNA sequencing was used to examine the effect of GFS on ALD. RESULTS: The LO2 cell line experiments demonstrated that GFS effectively mitigated alcohol-induced oxidative stress and reduced apoptosis by upregulating PI3K and Bcl-2 expression and decreasing the levels of malondialdehyde, total cholesterol, and triglycerides. In zebrafish, GFS improved morphological and physiological parameters and diminished oxidative stress-induced ALD. Meanwhile, the results from Western blotting indicated that GFS enhanced the expression of PI3K, Akt, and Bcl-2 proteins while reducing Bax protein expression, thereby ameliorating the ALD model in zebrafish. Metabolomics data revealed significant changes in a total of 46 potential biomarkers. Among them, metabolites such as prostaglandin F2 alpha belong to arachidonic acid metabolism. In addition, GFS also partly reversed the imbalance of gut microbiota composition caused by alcohol. At the genus level, alcohol consumption elevated the presence of Flectobacillus, Curvibacter, among others, and diminished Elizabethkingia within the intestinal microbes of zebrafish. Conversely, GFS reversed these effects, notably enhancing the abundance of Proteobacteria and Archaea. Correlation analyses further indicated a significant negative correlation between prostaglandin F2 alpha, 11,14,15-THETA, Taurocholic acid and Curvibacter. CONCLUSION: This study highlights a novel mechanism by which GFS modulates anti-ALD activity through the PI3K/Akt signalling pathway by influencing the intestinal flora-metabolite axis. These results indicate the potential of GFS as a functional food for ALD treatment via modulation of the gut flora.


Asunto(s)
Fermentación , Microbioma Gastrointestinal , Hepatopatías Alcohólicas , Panax , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Pez Cebra , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Panax/química , Hepatopatías Alcohólicas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ginsenósidos/farmacología , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Línea Celular , Humanos , Apoptosis/efectos de los fármacos
2.
Chin Med ; 19(1): 9, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218825

RESUMEN

Wu-tou decoction (WTD), a traditional Chinese medicine prescription, is used to treat rheumatoid arthritis (RA). It works by controlling intestinal flora and its metabolites, which in turn modulates the inflammatory response and intestinal barrier function. Small molecular compounds (SM) and polysaccharides (PS) were the primary constituents of WTD extract. In this work, a model of adjuvant-induced arthritis (AIA) in rats was established and treated with WTD, SM, and PS, respectively. 16S rRNA gene sequencing was used to examine the regulatory impact of the various groups on the disturbance of the gut flora induced by RA. Further, since PS cannot be absorbed into the blood, the influence of PS on the absorption and metabolism of SM was studied by examining their pharmacokinetic (PK) parameters of 23 active components in SM by UPLC-MS/MS. WTD was found to be more effective than PS and SM in alleviating arthritis in AIA rats, which may be related to changes in gut flora. The PK properties of 13 active compounds were altered after PS intervene. Based on the findings, PS may be able to manage the disruption of intestinal microbiota, enhance the intestinal environment of model animals, and hence influence SM absorption and metabolism.

3.
Rapid Commun Mass Spectrom ; 38(2): e9664, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38124169

RESUMEN

RATIONALE: TongFu XieXia Decoction (TFXXD), a formulation rooted in traditional Chinese medicine and optimized through clinical practice, serves as an advanced version of the classic Da Cheng Qi decoction used for treating intestinal obstruction (IO), demonstrating significant therapeutic efficacy. However, due to the intricate nature of herbal compositions, the principal constituents and potential mechanisms of TFXXD have yet to be clarified. Accordingly, this study seeks to identify the active compounds and molecular targets of TFXXD, as well as to elucidate its anti-IO mechanisms. METHODS: Qualitative identification of the principal constituents of TFXXD was accomplished using ultra-high preformance liquid chromatography-quadrupole-orbitrap mass spectrometry (UPLC-Q-Orbitrap-MS/MS) analysis. PharmMapper facilitated the prediction of potential molecular targets, whereas protein-protein interaction analysis was conducted using STRING 11.0. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the Metascape database. A "compounds-target-pathway" network was meticulously constructed within Cytoscape 3.8.2. Finally, molecular docking studies were performed to investigate the interactions between the core target and the crucial compound. RESULTS: UPLC-Q-Orbitrap-MS/MS analysis identified 65 components with high precision and sensitivity. Furthermore, 64 potential targets were identified as integral to TFXXD bioactivity in IO treatment. Gene Ontology enrichment analysis revealed 995 distinct biological functions, while the Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified 143 intricate signaling pathways. CONCLUSION: Molecular docking studies substantiated the substantial affinity between the TFXXD bioactive constituents and their corresponding targets in the context of IO. TFXXD exerts its therapeutic efficacy in IO through a multifaceted interplay between multiple compounds, targets, and pathways. The integration of network pharmacology with UPLC-Q-Orbitrap-MS/MS has emerged as a promising strategy to unravel the intricate web of molecular interactions underlying herbal medicine. However, it is imperative to emphasize the necessity for further in vivo and in vitro experiments.


Asunto(s)
Medicamentos Herbarios Chinos , Obstrucción Intestinal , Humanos , Farmacología en Red , Cromatografía Líquida de Alta Presión , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Obstrucción Intestinal/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
4.
Rapid Commun Mass Spectrom ; 37(23): e9640, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37942687

RESUMEN

RATIONALE: Spleen-qi deficiency syndrome, a common weakness syndrome in traditional Chinese medicine, results from insufficient spleen-qi levels. For centuries, ginseng has been relied upon as a traditional Chinese medicine to treat spleen-qi deficiency syndrome. Until now, the mechanism feature of ginseng in treating temper deficiency through intestinal bacteria and short-chain fatty acid (SCFA) metabolites has not been fully elucidated. METHODS: This study established a rat model of spleen-qi deficiency via multi-factor compound modeling that involved fatigue injury and a controlled diet. The content of SCFAs between different treatment groups was determined by gas chromatography-mass spectrometry. And the 16s rRNA sequencing technology was applied to reveal the effects of ginseng on the intestinal microecological environment of the rats. RESULTS: It was found that the ginseng treatment group exhibited the most remarkable regulatory effect on propionic acid, surpassing all other administration groups. Ginseng increased the relative abundance of beneficial bacteria and decreased that of harmful bacteria at the genus level in rats with spleen-qi deficiency syndrome. And propionic acid is significantly positively correlated with Lactobacillus level and significantly negatively correlated with uncultured_bacterium_f_Muribaculaceae (p < 0.05). n-Butyric acid is negatively correlated with the Faecalibaculum level (p < 0.01). n-Valeric acid is significantly negatively correlated with the Romboutsia level (p < 0.01). CONCLUSION: The mechanism of ginseng treatment for spleen-qi deficiency is elucidated from the perspective of gut microbiota and its metabolite SCFAs. It provides a new way for further development and utilization of ginseng and a theoretical basis.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Panax , Ratas , Animales , Bazo , ARN Ribosómico 16S/genética , Qi , Cromatografía de Gases y Espectrometría de Masas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Panax/química , Ácidos Grasos Volátiles
5.
J Sep Sci ; 46(17): e2300344, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37438972

RESUMEN

Patients with a spleen-qi deficiency often exhibit dysfunction in the metabolic system. Metabolites are considered the most direct reflection of individual physiological and pathological conditions and represent attractive candidates to provide deep insights into disease phenotypes. This study examines the potential therapeutic mechanism of wild ginseng on spleen-qi deficiency through the analysis of serum and urine metabolomics using rapid-resolution liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. The reasons for the superiority of wild ginseng treatment over cultivated ginseng were also analyzed in depth. After wild ginseng intervention, anandamide, urobilinogen, aldosterone, and testosterone glucuronide were significantly reduced in serum. Meanwhile, argininosuccinic acid, L-cysteine, and seven other metabolites were significantly elevated in serum. Nine metabolites, including L-acetylcarnitine, and citrulline were elevated in the urine, and trimethylamine N-oxide, adrenic acid, and 10 other metabolites were reduced. Arginine biosynthesis, pantothenate and CoA biosynthesis, thiamin metabolism, taurine, and tryptophan metabolism pathways were mainly improved. Further analysis was conducted on the relationship between Lactobacillus and Akkermansia bacteria with metabolites, and it was found that they are mainly related to amino acid metabolites. This study provides strong theoretical support and direction for further explanation of the immune mechanism of wild ginseng and lays the foundation for future studies.


Asunto(s)
Panax , Bazo , Ratas , Animales , Qi , Panax/química , Cromatografía Liquida , Metabolómica/métodos , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Biomarcadores
6.
Phytomedicine ; 116: 154879, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37229889

RESUMEN

BACKGROUND: The flavonoids and polysaccharides in Portulaca oleracea L. (PO) have significant antibacterial and antioxidant effects, which can inhibit common bacteria and remove free radicals in the body. However, there was little research on the use of PO to alleviate hyperpigmentation and photoaging damage. PURPOSE: This study was to investigate the anti-photoaging and whitening activity mechanism of polysaccharide of PO (POP) in vitro and in vivo. METHOD: In this study, 16 fractions obtained by four enzyme-assisted extraction from PO and their scavenging capabilities against 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals were evaluated. Among these fractions, a polysaccharide fraction (VPOP3) showed the strongest biological activity. VPOP3 was characterized by Fourier-transform infrared spectroscopy, molecular weight (MW), and monosaccharide composition analysis, and the protective effect of VPOP3 on photoaging and hyperpigmentation was researched. RESULTS: VPOP3 is a low-MW acidic heteropolysaccharide with MW mainly distributed around 0.71KDa, arabinose as its main monosaccharide component. VPOP3 reliably reduced the reactive oxygen species levels in cells and zebrafish and the level of lipid peroxidation in zebrafish. In addition, VPOP3 inhibited UVB-induced apoptotic body formation and apoptosis by downregulating caspase-3 and Bax and upregulating Bcl-2 in mitochondrion-mediated signaling pathways. On the other hand, VPOP3 at high concentrations significantly downregulated the expression of microphthalmia-associated transcription factor, tyrosinase (TYR), and TYR-related protein-1 and TYR-related protein-2 in the melanogenic signaling pathway to achieve a whitening effect. CONCLUSION: The above results showed that VPOP3 has superior activities of anti-photoaging and anti-melanogenesis and can be utilized as a safe resource in the manufacture of cosmetics.


Asunto(s)
Hiperpigmentación , Portulaca , Animales , Portulaca/química , Pez Cebra , Polisacáridos/farmacología , Polisacáridos/química , Transducción de Señal
7.
Chem Biodivers ; 19(9): e202200495, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35856892

RESUMEN

OBJECT: Edible Brown Seaweed Sargassum fusiforme (Harvey) Setchell, 1931 abbreviated as Sargassum fusiforme was used for folk medical therapy in East Asia countries over five hundred years. Saringosterol acetate (SA) was isolated from S. fusiforme in our previous study and indicated various effects. However, anti-obesity activity of SA and its mechanism still unknown. METHOD: The inhibitory effect of SA, isolated from S. fusiforme, on adipogenesis in 3T3-L1 adipocytes was investigated in vitro and in zebrafish model. Cell toxicity, differentiation, signaling pathway, and lipid accumulation of SA treated 3T3-L1 adipocytes were determined. The body weight and triglyceride content of diet-induced obese (DIO) adult male zebrafish were measured from 12 to 17 weeks after fertilization. RESULT: SA attenuated the differentiation of cells and reduced lipid accumulation, and triglyceride content in the 3T3-L1 adipocytes. During the differentiation of adipocytes, SA suppressed fat accumulation and decreased the expression of signal factors responsible for adipogenesis. In SA-treated adipocytes, while fatty acid synthetase was downregulated, AMP-activated protein kinase (AMPK) was upregulated. Furthermore, SA suppressed body weight and triglyceride content in DIO zebrafish. CONCLUSION: SA is a potential therapeutic agent in the management of metabolic disorders, such as obesity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Pez Cebra , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Acetatos/farmacología , Adipogénesis , Animales , Peso Corporal , Dieta Alta en Grasa , Ácido Graso Sintasas/metabolismo , Ácido Graso Sintasas/farmacología , Ácido Graso Sintasas/uso terapéutico , Masculino , Ratones , Obesidad/tratamiento farmacológico , Estigmasterol/análogos & derivados , Estigmasterol/farmacología , Triglicéridos/metabolismo , Pez Cebra/metabolismo
8.
J Pharm Biomed Anal ; 217: 114834, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35662012

RESUMEN

Panax ginseng C. A. Mey. (Ginseng) is a famous Chinese medicine with tonifying middle and replenishing qi effects and has been applied for the treatment of spleen-qi deficiency for many years. However, its potential therapeutic mechanisms have not been thoroughly studied. In this study, the metabolomic technique was applied to explore the therapeutic effect of ginseng on the spleen-qi deficiency. A rat model of spleen-qi deficiency was generated via the fatigue swimming method. After 3 weeks of treatment with ginseng, the entire metabolic changes in rat serum were profiled by gas chromatography-mass spectroscopy (GC-MS). The metabolic profiles in serum taurine and hypotaurine metabolism significantly differed among groups, in which a total of 17 metabolites were identified. Ginseng reversed the metabolic changes in the difference involving some metabolic pathways. Among them, beta-alanine metabolism, taurine and hypotaurine metabolism, and the pentose phosphate pathway are the key metabolic pathways. The therapeutic effects of ginseng on spleen-qi deficiency rats could be achieved by regulating multiple metabolic pathways, metabolites can be used as potential biomarkers for the diagnosis and monitoring of spleen-qi deficiency.


Asunto(s)
Panax , Animales , Cromatografía de Gases y Espectrometría de Masas , Metabolómica/métodos , Panax/química , Qi , Ratas , Bazo , Taurina
9.
J Pharm Biomed Anal ; 217: 114831, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35609509

RESUMEN

The effects of Scutellaria baicalensis Georgi. (S. baicalensis Georgi.) on the diversity of intestinal flora in rats with spleen deficiency and damp-heat was explored in the present study. 51 compounds in S. baicalensis Georgi. extract, including 37 flavonoids, 9 dihydroflavone, and 5 flavanols, were identified by ultra-high performance liquid chromatography-Q-Orbitrap-mass spectrometry(UPLC-Q-Orbitrap-MS/MS). Ethanol extract from Scutellariae Radix and fresh feces from rats with spleen deficiency and damp-heat were incubated in vitro for 48 h. At the phylum level, the ethanol extract noticeably increased the relative abundance of Firmicutes in the feces and effectively reduced those of Proteobacteria and Actinobacteria. At the genus level, the extract increased the relative abundance of the Lactobacillus and Bifidobacterium and reduced those of pathogenic bacteria, including Clostridium, Escherichia, Enterococcus, and Streptococcus. The results suggest that S. baicalensis Georgi. can regulate the structure and diversity of intestinal flora in rats with spleen deficiency and damp-heat and balance the body's metabolism.


Asunto(s)
Microbioma Gastrointestinal , Scutellaria baicalensis , Animales , Etanol , Flavonoides , Calor , Extractos Vegetales/química , Ratas , Scutellaria baicalensis/química , Bazo/metabolismo , Espectrometría de Masas en Tándem/métodos
10.
Artículo en Inglés | MEDLINE | ID: mdl-36605100

RESUMEN

Background: Marine traditional Chinese medicine (MTCM) is a class of traditional medicine that has antitumor, anti-inflammatory, and antiviral properties. Bibliometric approaches were used in this study to conduct systematic research in order to gain a complete picture of MTCM research around the world. Methods: CiteSpace and NoteExpress software were utilized as tools to examine the information about authors, sources, keywords, etc. Chinese publications were collected from the CNKI, VIP, and WANFANG databases; English publications were collected from the Web of Science database. Results: A total of 10080 publications were screened, and the search volume of Chinese literature is greater than that of English literature; Nanjing University of Chinese Medicine, China, and Jeju National University, South Korea, published a greater number of articles than other institutions; the scholars Zhaohui-Zhang and Youjin-Jeon have published the highest number of articles in the world. MTCM of shells was often researched for inorganic elements, and data mining methods were applied frequently; MTCM of animals was commonly used for antifatigue and was taken authenticity identification owing to the scarcity of resources; scholars conducted the most research on MTCM of plants, this category usually for antitumor, anti-inflammatory, and antioxidant purposes, and the mechanisms of action were studied in depth. The Chinese literature has undertaken a multifaceted research study based on the theories of processing and the nature of TCM. In the English literature, in-depth studies have been done from the perspectives of the mechanism of action, the extraction and purification of active substances, etc. Conclusions: According to the analysis of keywords, different medicinal parts present their own special research directions, and different research hotspots have also emerged under different medical theories. The development of MTCM is moving in the direction of standardization and modernization, thanks to the development of cross-disciplinary research as well as the use of several new technologies and statistical techniques.

11.
Artículo en Inglés | MEDLINE | ID: mdl-34721619

RESUMEN

Protopanaxadiol (PPD)-type ginsenosides are the main ginsenosides in ginseng (Panax ginseng C. A. Meyer) with potential therapeutic effects on diseases related to intestinal flora imbalance. This study aimed to investigate the in vitro metabolism of protopanaxadiol ginsenosides in human intestinal flora and their effect on the flora. Rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF MS) was utilised for the transformation of ginsenoside constituents for sample identification. Using 16S rDNA gene sequencing technique, the effect of PPD-type ginsenosides on gut microflora was analysed based on the indices of microflora diversity and gut microflora. The sample was transformed for 6 h, and the metabolites were ginsenoside Rb1, Rc, Rb2, Rb3, CO, Gyp-IX, Gyp-XVII, CMc-1, F2, Rg3, CK, Rh2, and PPD. The metabolites were CK, Rh2, and PPD when the samples were transformed for 60 h. The intestinal microflora were subjected to high-throughput sequencing using the Illumina MiSeq 2500 sequencing platform. In comparison with the faecal sample from the blank group, the protopanaxadiol saponin group significantly increased the relative abundance of Firmicutes and significantly decreased Bacteroidetes and Proteobacteria at the phylum level, whereas it significantly increased the relative abundance of Prevotella_9, Faecalibacterium, and Dialister and significantly decreased Escherichia-Shigella, Dorea, and Lachnoclostridium at the genus level. This study provides a basis for the determination of the pharmacodynamic material basis and pharmacodynamic targets of PPD-type ginsenosides based on the intestinal flora.

12.
Artículo en Inglés | MEDLINE | ID: mdl-33727947

RESUMEN

To find new anti-UV and whitening agents, 21 fractions isolated from three preparations of ginseng (white, red, and black ginseng) were screened, and their antioxidant effects on AAPH- or H2O2-induced damage were investigated. Furthermore, the protective effect against UV-mediated apoptosis and the tyrosinase inhibitory activity of the targeted fractions were evaluated in vitro and in a zebrafish model. Among all fractions, F10 from white ginseng was selected as having the strongest anti-UV and antimelanogenesis activities. This fraction exhibited excellent inhibitory effects on the pigmentation of zebrafish, which may be due to its potential tyrosinase inhibitory activity. Additionally, the chemical composition of F10 was evaluated by UPLC-MS and NMR instruments. The results indicated that F10 had a carbohydrate content of more than 76%, and the weight-average molecular weight was approximately 239 Da. Disaccharide sucrose was the main active compound in F10. These results suggest that F10 could be used as an ingredient for whitening cosmetics and regarded as an anti-UV filter in the future.

13.
Chem Biodivers ; 17(9): e2000199, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32578291

RESUMEN

Ginseng and the seed of Zizyphus jujuba var. spinosa, which are traditional Chinese medicinal materials, were often used in ancient Chinese recipes as a pair of medicines. They can replenish the primordial qi and tonify the spleen. This study investigated the effects of ginseng and the seed of Zizyphus jujuba var. spinosa (GS) extract on gut microbiota diversity in rats with spleen deficiency syndrome (SDS). A total of 52 compounds (including 16 flavonoids, 35 saponins, and 1 alkaloid) were identified and analyzed from the GS extract by UPLC-Q-Orbitrap-MS/MS. The GS extract significantly increased the relative abundance of Firmicutes and Bacteroidetes in rats with SDS but decreased that of Proteobacteria and Actinobacteria. At the genus level, the GS extract significantly increased the relative abundance of Lactobacillus and Bifidobacterium in rats with SDS but decreased that of Streptococcus, Escherichia-Shigella, Veillonella, and Enterococcus. In addition, the GS extract influenced glucose and amino acid metabolism. In summary, the results showed that the GS extract changed the structure and diversity of gut microbiota in rats with SDS and balanced the metabolic process.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Panax/química , Saponinas/farmacología , Enfermedades del Bazo/tratamiento farmacológico , Ziziphus/química , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Estructura Molecular , Raíces de Plantas/química , Ratas , Ratas Wistar , Saponinas/química , Saponinas/aislamiento & purificación , Semillas/química , Relación Estructura-Actividad , Síndrome
14.
J Pharm Biomed Anal ; 158: 451-460, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30032757

RESUMEN

Ginseng polysaccharides (GP) have been reported to modulate gut microbiota, and ginsenoside Rb1 is known to display significant hypoglycemic activity. However, the synergistic effect of Rb1 and GP when applied to diabetic treatment remains largely unknown. Male rats were divided into ten groups: blank group (B-Group), model group (D-Group), Rb1 group (Rb1-Group), CK group (CK-Group), GP groups and GP + Rb1 groups in dosage of high, middle and low (H-Group, M-Group, L-Group, H-Rb1-Group, M-Rb1-Group, and L-Rb1-Group). CK-Group, GP groups and Rb1 group were fed CK, GP and Rb1 for 30 days, respectively. GP + Rb1 groups were fed GP on the initial 15 days and GP and Rb1 on the final 15 days. The fasting glucose of all groups was measured every five days. The transformation of Rb1 in vitro by rat intestinal microflora, which was collected from the B-Group, D-Group and GP groups on the 15th day, was investigated using HPLC and RRLC-Q-TOF/MS. Analyses the of 16S rRNA gene of the fecal bacterial population and fecal ß-glucosidase activity were conducted among the B-Group, D-Group and H-Group. Compared with those of rats in the D-Group, the fasting glucose levels of rats in the CK-Group and H-Rb1-Group decreased highest. During transformation of Rb1 by diabetic rat intestinal microflora, five transformed products, including ginsenoside Rd, F2, CK, gypenoside XVII (G-XVII), and LXXV (G-LXXV), as well as three transformation pathways, were identified. When a high dose of GP was fed to diabetic rats for 15 days, the formation of intermediates, including G-XVII and G-LXXV was inhibited, and only one pathway (Rb1→Rd→F2→CK) was identified. Moreover, the biotransformation rate of CK increased from 14.0% to 86.7% after 8 h of cultivation. GP reinstated the perturbed holistic gut microbiota and promoted fecal ß-d-glucosidase activity. Ginsenoside Rb1 and GP shows synergistic effects when applied to diabetic treatment and may be developed as a potential antidiabetic drug.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Ginsenósidos/farmacología , Hipoglucemiantes/farmacología , Panax/química , Polisacáridos/farmacología , Animales , Biotransformación/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , ADN Bacteriano/aislamiento & purificación , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/microbiología , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Pruebas de Enzimas , Heces/enzimología , Heces/microbiología , Microbioma Gastrointestinal/genética , Ginsenósidos/metabolismo , Ginsenósidos/uso terapéutico , Humanos , Hipoglucemiantes/uso terapéutico , Masculino , Polisacáridos/uso terapéutico , ARN Ribosómico 16S/genética , Ratas , Ratas Wistar , Estreptozocina/toxicidad , beta-Glucosidasa/metabolismo
15.
Sci Rep ; 7(1): 138, 2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28273939

RESUMEN

Microbial transformation of ginsenosides to increase its pharmaceutical effect is gaining increasing attention in recent years. In this study, Cellulosimicrobium sp. TH-20, which was isolated from soil samples on which ginseng grown, exhibited effective ginsenoside-transforming activity. After protopanaxadiol (PPD)-type ginsenoside (Rb1) and protopanaxatriol (PPT)-type ginsenosides (Re and Rg1) were fed to C. sp. TH20, a total of 12 metabolites, including 6 new intermediate metabolites, were identified. Stepwise deglycosylation and dehydrogenation on the feeding precursors have been observed. The final products were confirmed to be rare ginsenosides Rd, GypXVII, Rg2 and PPT after 96 h transformation with 38-96% yields. The four products showed improved anti-inflammatory activities by using lipopolysaccharide (LPS)-induced murine RAW 264.7 macrophages and the xylene-induced acute inflammatory model of mouse ear edema. The results indicated that they could dramatically attenuate the production of TNF-α more effectively than the precursors. Our study would provide an example of a unique and powerful microbial cell factory for efficiently converting both PPD-type and PPT-type ginsenosides to rare natural products, which extends the drug candidates as novel anti-inflammatory remedies.


Asunto(s)
Actinobacteria/aislamiento & purificación , Antiinflamatorios/química , Edema/tratamiento farmacológico , Ginsenósidos/química , Panax/crecimiento & desarrollo , Actinobacteria/crecimiento & desarrollo , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Edema/inducido químicamente , Edema/inmunología , Ginsenósidos/administración & dosificación , Ginsenósidos/farmacología , Lipopolisacáridos/efectos adversos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Panax/química , Células RAW 264.7 , Microbiología del Suelo , Factor de Necrosis Tumoral alfa/metabolismo , Xilenos/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA