Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Emotion ; 24(2): 431-450, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37535567

RESUMEN

Socioemotional skills, such as the ability to recognize, understand, and regulate the emotions of self and others, are associated with both physical and emotional health. The present study tested the effectiveness of a recently validated online training program for increasing these emotional skills in adults. In this study, 448 participants (323 female) were randomly assigned to complete this training program or a placebo control program. Among those who completed the training program or placebo (N = 326), the training program led to improved scores post-training on measures of interoceptive and emotional awareness, mindfulness, emotion recognition, and emotion regulation strategies (e.g., reduced emotion suppression and greater impulse control) relative to placebo. In a smaller group of participants who also completed a 6-month follow-up visit (N = 94), sustained improvements were observed on several measures in those who completed the training program, while the placebo group instead showed decreased performance. This suggested a potentially protective effect against emotional challenges associated with the COVID-19 pandemic occurring during this time. These results suggest that this online training program shows promise in improving emotional skills relevant to adaptive social and emotional functioning, and that it might be useful as an intervention within at-risk populations and those with emotional disorders associated with reduced application of these skills. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Regulación Emocional , Atención Plena , Adulto , Humanos , Femenino , Atención Plena/métodos , Pandemias , Emociones
2.
Front Behav Neurosci ; 16: 886816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172467

RESUMEN

Disrupted sleep is a major feature in numerous clinical disorders and is related to decrements in affective memory processing. The prevalence of sleep disruption in post-traumatic stress disorder (PTSD) is suggested to be a key feature that exacerbates the impaired ability to recall extinction memories during experimental fear conditioning. We hypothesized that an intervention employing blue-wavelength light therapy (BLT) to regulate sleep and stabilize circadian rhythms in patients with PTSD (i.e., via regulated morning exposure) would be associated with PTSD symptom improvement, decreased sleep-related complaints, as well as improved consolidation and retention of extinction memories relative to a fear conditioning/extinction paradigm. Eighty-two individuals with PTSD underwent a well-validated fear conditioning/extinction protocol with subsequent assignment to receive morning BLUE (BLT) or placebo AMBER (ALT) light therapy daily for 30-min over 6-weeks. Participants returned after the intervention for post-treatment extinction recall, comprised of exposure to the previously conditioned stimuli, with the difference in skin conductance response between the "extinguished" and the "never-extinguished" stimuli at follow-up. Participants also viewed previously conditioned stimuli in a novel context during a functional magnetic resonance imaging (fMRI) scan. BLUE light therapy was associated with improvements relative to correlated decreases between PTSD symptoms and sleep-related complaints. Participants receiving BLT also sustained retention of the extinction memory, while those in the placebo amber light treatment group showed impairment, characterized by the restoration of the extinguished fear response after 6-weeks. Participants in the ALT also demonstrated greater reactivity in the left insula when viewing the previously extinguished fear-conditioned stimuli in a novel context. Daily BLUE-wavelength morning light exposure was associated with greater retention of extinction learning in patients with PTSD when compared to ALT, as supported by both autonomic and neurobiological reactivity. We speculate that improved sleep facilitated by a stabilized circadian rhythm, after fear-learning, led to greater consolidation of the fear extinction memory, decreased PTSD symptom presentation, and associated decreases in sleep-related complaints. Prominent exposure treatments for PTSD incorporate principles of fear extinction, and our findings suggest that blue light treatment may facilitate treatment gains by promoting the consolidation of extinction memories via improved sleep.

3.
Front Behav Neurosci ; 16: 910239, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172470

RESUMEN

Background: Posttraumatic stress disorder (PTSD) is associated with numerous cognitive, affective, and psychophysiological outcomes, including problems with sleep and circadian rhythms. We tested the effectiveness of a daily morning blue-light exposure treatment (BLT) versus a matched amber light treatment (ALT) to regulate sleep in individuals diagnosed with PTSD. Moreover, PTSD is also associated with reliable findings on structural neuroimaging scans, including reduced amygdala volumes and other differences in cortical gray matter volume (GMV) that may be indicative of underlying neurobehavioral dysfunctions. We examined the effect of BLT versus ALT on GMV and its association with sleep outcomes. Methods: Seventy-six individuals (25 male; 51 female) meeting DSM-V criteria for PTSD (Age = 31.45 years, SD = 8.83) completed sleep assessments and structural neuroimaging scans, followed by random assignment one of two light groups, including BLT (469 nm; n = 39) or placebo ALT (578 nm; n = 37) light therapy daily for 30-min over 6-weeks. Participants wore a wrist actigraph for the duration of the study. After treatment, participants returned to complete sleep assessments and a structural neuroimaging scan. Neuroimaging data were analyzed using the Computational Anatomy Toolbox (CAT12) and Voxel-Based Morphometry (VBM) modules within the Statistical Parametric Mapping (SPM12) software. Results: The BLT condition produced significant increases in total time in bed and total sleep time from actigraphy compared to the ALT condition, while ALT improved wake after sleep onset and sleep efficiency compared to BLT. Additionally, BLT led to an increase in left amygdala volume compared to ALT but did not affect hypothesized medial prefrontal regions. Finally, within group correlations showed that improvements in sleep quality and nightmare severity were correlated with increases in left amygdala volume over the course of treatment for the BLT group but not the ALT group. Conclusion: In individuals with PTSD, daily exposure to morning blue light treatment was associated with improvements in objective sleep duration and increased volume of the left amygdala compared to amber placebo light treatment, and changes in amygdala volume correlated with subjective improvement in sleep. These findings suggest that daily morning BLT may provide an important non-pharmacologic adjunctive approach for facilitating sleep and neurobehavioral recovery from PTSD.

4.
Front Neurol ; 12: 625443, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841300

RESUMEN

Blue wavelength light has been used successfully as a treatment method for certain mood disorders, but, the underlying mechanisms behind the mood enhancing effects of light remain poorly understood. We investigated the effects of a single dose of 30 min of blue wavelength light (n = 17) vs. amber wavelength light (n = 12) exposure in a sample of healthy adults on subsequent resting-state functional and directed connectivity, and associations with changes in state affect. Individuals who received blue vs. amber wavelength light showed greater positive connectivity between the right amygdala and a region within the left dorsolateral prefrontal cortex (DLPFC). In addition, using granger causality, the findings showed that individuals who received blue wavelength light displayed greater bidirectional information flow between these two regions relative to amber light. Furthermore, the strength of amygdala-DLPFC functional connectivity was associated with greater decreases in negative mood for the blue, but not the amber light condition. Blue light exposure may positively influence mood by modulating greater information flow between the amygdala and the DLPFC, which may result in greater engagement of cognitive control strategies that are needed to perceive and regulate arousal and mood.

5.
Front Neurol ; 12: 625431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633674

RESUMEN

Background: Mild traumatic brain injuries (mTBIs) are associated with novel or worsened sleep disruption. Several studies indicate that daily morning blue light therapy (BLT) is effective for reducing post-mTBI daytime sleepiness and fatigue. Studies demonstrating changes in brain structure and function following BLT are limited. The present study's purpose is to identify the effect of daily morning BLT on brain structure and functional connectivity and the association between these changes and self-reported change in post-mTBI daytime sleepiness. Methods: A total of 62 individuals recovering from a mTBI were recruited from two US cities to participate in a double-blind placebo-controlled trial. Eligible individuals were randomly assigned to undergo 6 weeks of 30 min daily morning blue or placebo amber light therapy (ALT). Prior to and following treatment all individuals completed a comprehensive battery that included the Epworth Sleepiness Scale as a measure of self-reported daytime sleepiness. All individuals underwent a multimodal neuroimaging battery that included anatomical and resting-state functional magnetic resonance imaging. Atlas-based regional change in gray matter volume (GMV) and region-to-region functional connectivity from baseline to post-treatment were the primary endpoints for this study. Results: After adjusting for pre-treatment GMV, individuals receiving BLT had greater GMV than those receiving amber light in 15 regions of interest, including the right thalamus and bilateral prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with greater GMV in 74 ROIs, covering many of the same general regions. Likewise, BLT was associated with increased functional connectivity between the thalamus and both prefrontal and orbitofrontal cortices. Improved daytime sleepiness was associated with increased functional connectivity between attention and cognitive control networks as well as decreased connectivity between visual, motor, and attention networks (all FDR corrected p < 0.05). Conclusions: Following daily morning BLT, moderate to large increases in both gray matter volume and functional connectivity were observed in areas and networks previously associated with both sleep regulation and daytime cognitive function, alertness, and attention. Additionally, these findings were associated with improvements in self-reported daytime sleepiness. Further work is needed to identify the personal characteristics that may selectively identify individuals recovering from a mTBI for whom BLT may be optimally beneficial.

6.
J Head Trauma Rehabil ; 35(5): E405-E421, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32472836

RESUMEN

OBJECTIVE: Identify the treatment effects of 6 weeks of daily 30-minute sessions of morning blue light therapy compared with placebo amber light therapy in the treatment of sleep disruption following mild traumatic brain injury. DESIGN: Placebo-controlled randomized trial. PARTICIPANTS: Adults aged 18 to 45 years with a mild traumatic brain injury within the past 18 months (n = 35). MAIN OUTCOME MEASURES: Epworth Sleepiness Scale, Pittsburgh Sleep Quality Index, Beck Depression Inventory II, Rivermead Post-concussion Symptom Questionnaire, Functional Outcomes of Sleep Questionnaire, and actigraphy-derived sleep measures. RESULTS: Following treatment, moderate to large improvements were observed with individuals in the blue light therapy group reporting lower Epworth Sleepiness Scale (Hedges' g = 0.882), Beck Depression Inventory II (g = 0.684), Rivermead Post-concussion Symptom Questionnaire chronic (g = 0.611), and somatic (g = 0.597) symptoms, and experiencing lower normalized wake after sleep onset (g = 0.667) than those in the amber light therapy group. In addition, individuals in the blue light therapy group experienced greater total sleep time (g = 0.529) and reported improved Functional Outcomes of Sleep Questionnaire scores (g = 0.929) than those in the amber light therapy group. CONCLUSION: Daytime sleepiness, fatigue, and sleep disruption are common following a mild traumatic brain injury. These findings further substantiate blue light therapy as a promising nonpharmacological approach to improve these sleep-related complaints with the added benefit of improved postconcussion symptoms and depression severity.


Asunto(s)
Conmoción Encefálica , Trastornos de Somnolencia Excesiva , Fototerapia , Adulto , Conmoción Encefálica/complicaciones , Conmoción Encefálica/diagnóstico , Conmoción Encefálica/terapia , Trastornos de Somnolencia Excesiva/diagnóstico , Trastornos de Somnolencia Excesiva/etiología , Trastornos de Somnolencia Excesiva/terapia , Humanos , Calidad de Vida , Sueño
7.
Front Neurol ; 8: 616, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29213254

RESUMEN

Mild traumatic brain injury (mTBI) is a common and often inconspicuous wound that is frequently associated with chronic low-grade symptoms and cognitive dysfunction. Previous evidence suggests that daily blue wavelength light therapy may be effective at reducing fatigue and improving sleep in patients recovering from mTBI. However, the effects of light therapy on recovering brain structure remain unexplored. In this study, we analyzed white matter diffusion properties, including generalized fractional anisotropy, and the quantity of water diffusion in isotropic (i.e., isotropic diffusion) and anisotropic fashion (i.e., quantitative anisotropy, QA) for fibers crossing 11 brain areas known to be significantly affected following mTBI. Specifically, we investigated how 6 weeks of daily morning blue light exposure therapy (compared to an amber-light placebo condition) impacted changes in white matter diffusion in individuals with mTBI. We observed a significant impact of the blue light treatment (relative to the placebo) on the amount of water diffusion (QA) for multiple brain areas, including the corpus callosum, anterior corona radiata, and thalamus. Moreover, many of these changes were associated with improvements in sleep latency and delayed memory. These findings suggest that blue wavelength light exposure may serve as one of the potential non-pharmacological treatments for facilitating structural and functional recovery following mTBI; they also support the use of QA as a reliable neuro-biomarker for mTBI therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA