Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 12(11)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37296632

RESUMEN

Background: Transient receptor potential ankyrin 1 (TRPA1) activation is implicated in neuropathic pain-like symptoms. However, whether TRPA1 is solely implicated in pain-signaling or contributes to neuroinflammation in multiple sclerosis (MS) is unknown. Here, we evaluated the TRPA1 role in neuroinflammation underlying pain-like symptoms using two different models of MS. Methods: Using a myelin antigen, Trpa1+/+ or Trpa1-/- female mice developed relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) (Quil A as adjuvant) or progressive experimental autoimmune encephalomyelitis (PMS)-EAE (complete Freund's adjuvant). The locomotor performance, clinical scores, mechanical/cold allodynia, and neuroinflammatory MS markers were evaluated. Results: Mechanical and cold allodynia detected in RR-EAE, or PMS-EAE Trpa1+/+ mice, were not observed in Trpa1-/- mice. The increased number of cells labeled for ionized calcium-binding adapter molecule 1 (Iba1) or glial fibrillary acidic protein (GFAP), two neuroinflammatory markers in the spinal cord observed in both RR-EAE or PMS-EAE Trpa1+/+ mice, was reduced in Trpa1-/- mice. By Olig2 marker and luxol fast blue staining, prevention of the demyelinating process in Trpa1-/- induced mice was also detected. Conclusions: Present results indicate that the proalgesic role of TRPA1 in EAE mouse models is primarily mediated by its ability to promote spinal neuroinflammation and further strengthen the channel inhibition to treat neuropathic pain in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Neuralgia , Canales de Potencial de Receptor Transitorio , Femenino , Animales , Ratones , Esclerosis Múltiple/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Canal Catiónico TRPA1/metabolismo , Hiperalgesia/tratamiento farmacológico , Nocicepción , Canales de Potencial de Receptor Transitorio/metabolismo , Enfermedades Neuroinflamatorias , Médula Espinal/metabolismo , Neuralgia/tratamiento farmacológico
2.
Regul Toxicol Pharmacol ; 115: 104683, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32416109

RESUMEN

Arachis hypogaea L. (peanut) leaf is traditionally used for the treatment of insomnia in Asia. However, studies describing the safety and toxicity profile for this plant preparation are limited. Thus, the goal of this study was to investigate the toxicity of peanut leaf hydroalcoholic extract (PLHE) repeated treatment. The extract was administered orally (100, 300 or 1000 mg/kg) in male and female Wistar rats for 28 days (OECD guideline 407). PLHE treatment did not cause mortality or weight variation in the animals. Also, there was no alteration on locomotor activity (open field test), motor coordination (rotarod test), or anxiety behaviour (elevated plus-maze test). Male rats had a reduction in relative liver weight (100 mg/kg) and an increase in total kidney weight (1000 mg/kg), but there was no change in biochemical and haematological parameters after PLHE treatment. Free extracellular double-stranded DNA (dsDNA) levels was also evaluated, but PLHE treatment did not increase this parameter in rat organs. Also, the dose of 1000 mg/kg of PLHE significantly increased the total thiols in the liver of females compared with the control animals. Thus, PLHE did not induce toxicity after repeated exposure for 28 days in rats.


Asunto(s)
Arachis , Extractos Vegetales/toxicidad , Administración Oral , Alcoholes/química , Animales , Femenino , Masculino , Hojas de la Planta , Ratas Wistar , Solventes/química , Pruebas de Toxicidad Subaguda
3.
Inflammopharmacology ; 27(4): 829-844, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31098702

RESUMEN

Copaifera officinalis L. possesses traditional uses as an analgesic, anti-inflammatory, and antiseptic. However, until now the antinociceptive effect and the mechanism of action were not described for Copaifera officinalis L. oil and no compound present in this oil was identified to be responsible for its biological effects. The goal of this study was to identify the presence of kaurenoic acid in Copaifera officinalis oil and investigate its antinociceptive effect, mechanism of action, and possible adverse effects in mice. The quantification of kaurenoic acid in Copaifera officinalis oil was done by HPLC-DAD technique. Male and female albino Swiss mice (25-35 g) were used to test the antinociceptive effect of Copaifera officinalis (10 mg/kg, intragastric) or kaurenoic acid (1 mg/kg) in the tail-flick test, intraplantar injection of capsaicin, allyl isothiocyanate (AITC) or complete Freund's adjuvant (CFA). Copaifera officinalis oil and kaurenoic acid caused the antinociceptive effect in the tail-flick test in a dose-dependent manner, and their effect was reversed by naloxone (an opioid antagonist). Copaifera officinalis oil or kaurenoic acid reduced the nociception caused by capsaicin or AITC and produced an anti-allodynic effect in the CFA model (after acute or repeated administration for 7 days). Possible adverse effects were also observed, and non-detectable adverse effect was observed for the intragastric administration of Copaiba officinalis oil or kaurenoic acid and in the same way, the treatments were neither genotoxic nor mutagenic at the doses tested. Thus, Copaiba officinalis oil, and kaurenoic acid possess antinociceptive action without adverse effects.


Asunto(s)
Analgésicos/farmacología , Diterpenos/farmacología , Fabaceae/química , Nocicepción/efectos de los fármacos , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/farmacología , Capsaicina/farmacología , Femenino , Adyuvante de Freund/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Masculino , Ratones , Dimensión del Dolor/métodos
4.
Mol Nutr Food Res ; 62(16): e1800050, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29888863

RESUMEN

SCOPE: Beneficial effects produced by polyphenolic compounds are used in the treatment of various diseases, including diabetes. Thus it is relevant to investigate the protective effect of lingonberry extract (LB) on the activities of nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (5'-NT), and adenosine deaminase (ADA); the density of A1, A2A, and P2×7 receptors; production of reactive species (RS); and the levels of thiobarbituric acid reactive substances (TBARS) in the cerebral cortex of streptozotocin-induced diabetic rats. METHODS AND RESULTS: Animals were divided into five groups (n = 10): control/saline; control/LB 50 mg kg-1 ; diabetic/saline; diabetic/LB 25 mg kg-1 ; and diabetic/LB 50 mg kg-1 ; and treated for 30 days. Our results demonstrate that the treatment with LB increased NTPDase activity in the diabetic/LB 50 group compared to diabetic/saline group. Western blot analysis showed that LB restored the density of purinergic receptors to the approximate values of the control/saline group. An increase in the levels of RS and TBARS was observed in the diabetic/saline group compared with the control/saline group, and treatment with LB can prevent this increase. CONCLUSION: This study showed that LB could reverse the modifications found in the diabetic state, suggesting that lingonberry may be a coadjuvant in the treatment of diabetes.


Asunto(s)
Aminohidrolasas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Receptores Purinérgicos/efectos de los fármacos , Vaccinium vitis-Idaea , 5'-Nucleotidasa/metabolismo , Animales , Glucemia/análisis , Corteza Cerebral/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas , Ratas Wistar , Estreptozocina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA