Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 97: 1575-1585, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29793320

RESUMEN

Mimosa tenuiflora (Willd.) Poiret, popularly known in Brazil as "jurema-preta" is widely used against bronchitis, fever, headache and inflammation. Its antioxidant, anti-inflammatory and antinociceptive potential has already been reported. To assess the orofacial antinociceptive effect of M. tenuiflora, ethanolic extracts of M. tenuiflora (leaves, twigs, barks and roots) were submitted to in vitro tests of antioxidant activity. The extract with the highest antioxidant potential was partitioned and subjected to preliminary chemical prospecting, GC-MS, measurement of phenolic content and cytotoxicity tests of the fraction with the highest antioxidant activity. The nontoxic fraction with the highest antioxidant activity (FATEM) was subjected to tests of acute and chronic orofacial nociception and locomotor activity. The possible mechanisms of neuromodulation were also assessed. The EtOAc fraction, obtained from the ethanolic extract of M. tenuiflora barks, was the one with the highest antioxidant potential and nontoxic (FATEM), and Benzyloxyamine was the major constituent (34.27%). FATEM did not alter the locomotor system of mice and reduced significantly the orofacial nociceptive behavior induced by formalin, glutamate, capsaicin, cinnamaldehyde or acidic saline compared to the control group. FATEM also inhibited formalin- or mustard oil-induced temporomandibular nociception. In addition, it also reduced mustard oil-induced orofacial muscle nociception. However, FATEM did not alter hypertonic saline-induced corneal nociception. Neuropathic nociception was reversed by treatment with FATEM. The antinociceptive effect of FATEM was inhibited by naloxone, L-NAME and glibenclamide. FATEM has pharmacological potential for the treatment of acute and neuropathic orofacial pain and this effect is modulated by the opioid system, nitric oxide and ATP-sensitive potassium channels. These results lead us to studies of isolation and characterization of bioactive principles.


Asunto(s)
Analgésicos/uso terapéutico , Dolor Facial/tratamiento farmacológico , Mimosa/química , Nocicepción , Extractos Vegetales/uso terapéutico , Acroleína/análogos & derivados , Analgésicos/farmacología , Animales , Antioxidantes/metabolismo , Capsaicina , Fraccionamiento Químico , Chlorocebus aethiops , Etanol , Dolor Facial/patología , Ácido Glutámico , Gliburida/farmacología , Gliburida/uso terapéutico , Ratones , Actividad Motora/efectos de los fármacos , NG-Nitroarginina Metil Éster/farmacología , NG-Nitroarginina Metil Éster/uso terapéutico , Naloxona/farmacología , Naloxona/uso terapéutico , Nocicepción/efectos de los fármacos , Fenoles/análisis , Extractos Vegetales/farmacología , Ratas Wistar , Articulación Temporomandibular/efectos de los fármacos , Articulación Temporomandibular/patología , Células Vero
2.
Chem Biol Interact ; 256: 9-15, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27302204

RESUMEN

Orofacial pain is a highly prevalent clinical condition, yet difficult to control effectively with available drugs. Much attention is currently focused on the anti-inflammatory and antinociceptive properties of lectins. The purpose of this study was to evaluate the antinociceptive effect of frutalin (FTL) using rodent models of inflammatory and neuropathic orofacial pain. Acute pain was induced by formalin, glutamate or capsaicin (orofacial model) and hypertonic saline (corneal model). In one experiment, animals were pretreated with l-NAME and naloxone to investigate the mechanism of antinociception. The involvement of the lectin domain in the antinociceptive effect of FTL was verified by allowing the lectin to bind to its specific ligand. In another experiment, animals pretreated with FTL or saline were submitted to the temporomandibular joint formalin test. In yet another, animals were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of thermal hypersensitivity using acetone. Motor activity was evaluated with the rotarod test. A molecular docking was performed using the TRPV1 channel. Pretreatment with FTL significantly reduced nociceptive behaviour associated with acute and neuropathic pain, especially at 0.5 mg/kg. Antinociception was effectively inhibited by l-NAME and d-galactose. In line with in vivo experiments, docking studies indicated that FTL may interact with TRPV1. Our results confirm the potential pharmacological relevance of FTL as an inhibitor of orofacial nociception in acute and chronic pain mediated by TRPA1, TRPV1 and TRPM8 receptor.


Asunto(s)
Analgésicos/uso terapéutico , Dolor Facial/tratamiento farmacológico , Galectinas/uso terapéutico , Dolor Agudo/tratamiento farmacológico , Dolor Agudo/metabolismo , Analgésicos/aislamiento & purificación , Animales , Artocarpus/química , Modelos Animales de Enfermedad , Dolor Facial/metabolismo , Galectinas/aislamiento & purificación , Ratones , Simulación del Acoplamiento Molecular , Neuralgia , Ratas Wistar , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA