Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 26(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562771

RESUMEN

Lantana rhodesiensis Moldenke is a plant widely used to treat diseases, such as rheumatism, diabetes, and malaria in traditional medicine. To better understand the traditional uses of this plant, a phytochemical study was undertaken, revealing a higher proportion of polyphenols, including flavonoids in L. rhodesiensis leaf extract and moderate proportion in stem and root extracts. The antioxidant activity of the extracts was also determined using three different assays: the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, the FRAP method (Ferric-reducing antioxidant power) and the ß-carotene bleaching test. The anti-malarial activity of each extract was also evaluated using asexual erythrocyte stages of Plasmodium falciparum, chloroquine-sensitive strain 3D7. The results showed that the leaf extract exhibited higher antioxidant and anti-malarial activities in comparison with the stem and root extracts, probably due to the presence of higher quantities of polyphenols including flavonoids in the leaves. A positive linear correlation was established between the phenolic compound content (total polyphenols including flavonoids and tannins; and total flavonoids) and the antioxidant activity of all extracts. Furthermore, four flavones were isolated from leaf dichloromethane and ethyl acetate fractions: a new flavone named rhodescine (5,6,3',5'-tetrahydroxy-7,4'-dimethoxyflavone) (1), 5-hydroxy-6,7,3',4',5'-pentamethoxyflavone (2), 5-hydroxy-6,7,3',4'-tetramethoxyflavone (3), and 5,6,3'-trihydroxy-7,4'-dimethoxyflavone (4). Their structures were elucidated by 1H, 13CNMR, COSY, HSQC, HMBC, and MS-EI spectral methods. Aside from compound 2, all other molecules were described for the first time in this plant species.


Asunto(s)
Antimaláricos/farmacología , Antioxidantes/farmacología , Lantana/química , Fitoquímicos/farmacología , Antimaláricos/química , Antioxidantes/química , Fitoquímicos/química , Hojas de la Planta/química , Polifenoles/análisis
2.
Int J Mol Sci ; 21(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961865

RESUMEN

Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Animales , Técnicas de Cultivo de Célula , Medios de Cultivo , Humanos , Metaboloma , Xenobióticos/metabolismo , Xenobióticos/farmacología
3.
J Mol Biol ; 392(5): 1278-91, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19665032

RESUMEN

Metallo-beta-lactamases catalyze the hydrolysis of most beta-lactam antibiotics and hence represent a major clinical concern. While enzymes belonging to subclass B1 have been shown to display maximum activity as dizinc species, the actual metal-to-protein stoichiometry and the affinity for zinc are not clear. We have further investigated the process of metal binding to the beta-lactamase II from Bacillus cereus 569/H/9 (known as BcII). Zinc binding was monitored using complementary biophysical techniques, including circular dichroism in the far-UV, enzymatic activity measurements, competition with a chromophoric chelator, mass spectrometry, and nuclear magnetic resonance. Most noticeably, mass spectrometry and nuclear magnetic resonance experiments, together with catalytic activity measurements, demonstrate that two zinc ions bind cooperatively to the enzyme active site (with K(1)/K(2)> or =5) and, hence, that catalysis is associated with the dizinc enzyme species only. Furthermore, competitive experiments with the chromophoric chelator Mag-Fura-2 indicates K(2)<80 nM. This contrasts with cadmium binding, which is clearly a noncooperative process with the mono form being the only species significantly populated in the presence of 1 molar equivalent of Cd(II). Interestingly, optical measurements reveal that although the apo and dizinc species exhibit undistinguishable tertiary structural organizations, the metal-depleted enzyme shows a significant decrease in its alpha-helical content, presumably associated with enhanced flexibility.


Asunto(s)
Antibacterianos/metabolismo , Bacillus cereus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Zinc/metabolismo , beta-Lactamasas/química , beta-Lactamasas/metabolismo , beta-Lactamas/metabolismo , Dicroismo Circular , Cinética , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Unión Proteica , Espectrofotometría
4.
Org Biomol Chem ; 6(13): 2282-94, 2008 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-18563261

RESUMEN

The development of broad-spectrum metallo-beta-lactamase (MBL) inhibitors is challenging due to structural diversity and differences in metal utilisation by these enzymes. Analysis of structural data, followed by non-denturing mass spectrometric analyses, identified thiols proposed to inhibit representative MBLs from all three sub-classes: B1, B2 and B3. Solution analyses led to the identification of broad spectrum inhibitors, including potent inhibitors of the CphA MBL (Aeromonas hydrophila). Structural studies revealed that, as observed for other B1 and B3 MBLs, inhibition of the L1 MBL thiols involves metal chelation. Evidence is reported that this is not the case for inhibition of the CphA enzyme by some thiols; the crystal structure of the CphA-Zn-inhibitor complex reveals a binding mode in which the thiol does not interact with the zinc. The structural data enabled the design and the production of further more potent inhibitors. Overall the results suggest that the development of reasonably broad-spectrum MBL inhibitors should be possible.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/farmacología , Inhibidores de beta-Lactamasas , beta-Lactamasas/química , Bacterias/efectos de los fármacos , Bacterias/enzimología , Sitios de Unión , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Moleculares , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA