Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cogn Neurosci ; 25(12): 2072-85, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23859643

RESUMEN

Light regulates multiple non-image-forming (or nonvisual) circadian, neuroendocrine, and neurobehavioral functions, via outputs from intrinsically photosensitive retinal ganglion cells (ipRGCs). Exposure to light directly enhances alertness and performance, so light is an important regulator of wakefulness and cognition. The roles of rods, cones, and ipRGCs in the impact of light on cognitive brain functions remain unclear, however. A small percentage of blind individuals retain non-image-forming photoreception and offer a unique opportunity to investigate light impacts in the absence of conscious vision, presumably through ipRGCs. Here, we show that three such patients were able to choose nonrandomly about the presence of light despite their complete lack of sight. Furthermore, 2 sec of blue light modified EEG activity when administered simultaneously to auditory stimulations. fMRI further showed that, during an auditory working memory task, less than a minute of blue light triggered the recruitment of supplemental prefrontal and thalamic brain regions involved in alertness and cognition regulation as well as key areas of the default mode network. These results, which have to be considered as a proof of concept, show that non-image-forming photoreception triggers some awareness for light and can have a more rapid impact on human cognition than previously understood, if brain processing is actively engaged. Furthermore, light stimulates higher cognitive brain activity, independently of vision, and engages supplemental brain areas to perform an ongoing cognitive process. To our knowledge, our results constitute the first indication that ipRGC signaling may rapidly affect fundamental cerebral organization, so that it could potentially participate to the regulation of numerous aspects of human brain function.


Asunto(s)
Ceguera/metabolismo , Ceguera/terapia , Encéfalo/metabolismo , Cognición/fisiología , Estimulación Luminosa/métodos , Fototerapia/métodos , Anciano , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Desempeño Psicomotor/fisiología
2.
Soc Cogn Affect Neurosci ; 8(1): 4-14, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22446298

RESUMEN

Mindfulness meditation has been shown to promote emotional stability. Moreover, during the processing of aversive and self-referential stimuli, mindful awareness is associated with reduced medial prefrontal cortex (MPFC) activity, a central default mode network (DMN) component. However, it remains unclear whether mindfulness practice influences functional connectivity between DMN regions and, if so, whether such impact persists beyond a state of meditation. Consequently, this study examined the effect of extensive mindfulness training on functional connectivity within the DMN during a restful state. Resting-state data were collected from 13 experienced meditators (with over 1000 h of training) and 11 beginner meditators (with no prior experience, trained for 1 week before the study) using functional magnetic resonance imaging (fMRI). Pairwise correlations and partial correlations were computed between DMN seed regions' time courses and were compared between groups utilizing a Bayesian sampling scheme. Relative to beginners, experienced meditators had weaker functional connectivity between DMN regions involved in self-referential processing and emotional appraisal. In addition, experienced meditators had increased connectivity between certain DMN regions (e.g. dorso-medial PFC and right inferior parietal lobule), compared to beginner meditators. These findings suggest that meditation training leads to functional connectivity changes between core DMN regions possibly reflecting strengthened present-moment awareness.


Asunto(s)
Atención/fisiología , Concienciación/fisiología , Meditación/métodos , Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Adaptación Psicológica/fisiología , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Práctica Psicológica , Autoimagen
3.
Biol Psychiatry ; 70(10): 954-61, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21820647

RESUMEN

BACKGROUND: Vulnerability to the reduction in natural light associated with fall/winter is generally accepted as the main trigger of seasonal affective disorder (SAD), whereas light therapy is a treatment of choice of the disorder. However, the relationship between exposure to light and mood regulation remains unclear. As compared with green light, blue light was shown to acutely modulate emotion brain processing in healthy individuals. Here, we investigated the impact of light on emotion brain processing in patients with SAD and healthy control subjects and its relationship with retinal light sensitivity. METHODS: Fourteen symptomatic untreated patients with SAD (34.5 ± 8.2 years; 9 women) and 16 healthy control subjects (32.3 ± 7.7 years; 11 women) performed an auditory emotional task in functional magnetic resonance imaging during the fall/winter season, while being exposed to alternating blue and green monochromatic light. Scotopic and photopic retinal light sensitivities were then evaluated with electroretinography. RESULTS: Blue light enhanced responses to auditory emotional stimuli in the posterior hypothalamus in patients with SAD, whereas green light decreased these responses. These effects of blue and green light were not observed in healthy control subjects, despite similar retinal sensitivity in SAD and control subjects. CONCLUSIONS: These results point to the posterior hypothalamus as the neurobiological substrate involved in specific aspects of SAD, including a distinctive response to light and altered emotional responses.


Asunto(s)
Color , Hipotálamo/fisiopatología , Trastorno Afectivo Estacional/patología , Estimulación Acústica , Adolescente , Adulto , Electrorretinografía , Emociones/fisiología , Femenino , Humanos , Hipotálamo/irrigación sanguínea , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Oxígeno/sangre , Tiempo de Reacción , Adulto Joven
4.
Neuroimage ; 57(4): 1524-33, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21679770

RESUMEN

There is mounting evidence that mindfulness meditation is beneficial for the treatment of mood and anxiety disorders, yet little is known regarding the neural mechanisms through which mindfulness modulates emotional responses. Thus, a central objective of this functional magnetic resonance imaging study was to investigate the effects of mindfulness on the neural responses to emotionally laden stimuli. Another major goal of this study was to examine the impact of the extent of mindfulness training on the brain mechanisms supporting the processing of emotional stimuli. Twelve experienced (with over 1000 h of practice) and 10 beginner meditators were scanned as they viewed negative, positive, and neutral pictures in a mindful state and a non-mindful state of awareness. Results indicated that the Mindful condition attenuated emotional intensity perceived from pictures, while brain imaging data suggested that this effect was achieved through distinct neural mechanisms for each group of participants. For experienced meditators compared with beginners, mindfulness induced a deactivation of default mode network areas (medial prefrontal and posterior cingulate cortices) across all valence categories and did not influence responses in brain regions involved in emotional reactivity during emotional processing. On the other hand, for beginners relative to experienced meditators, mindfulness induced a down-regulation of the left amygdala during emotional processing. These findings suggest that the long-term practice of mindfulness leads to emotional stability by promoting acceptance of emotional states and enhanced present-moment awareness, rather than by eliciting control over low-level affective cerebral systems from higher-order cortical brain regions. These results have implications for affect-related psychological disorders.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Emociones/fisiología , Meditación/psicología , Adulto , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA