Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neuroendocrinol ; 34(10): e13198, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36168278

RESUMEN

In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.


Asunto(s)
Hipotálamo , Transcriptoma , Humanos , Animales , Ovinos , Femenino , Estaciones del Año , Hipotálamo/metabolismo , Fotoperiodo , Reproducción/fisiología , Mamíferos
2.
J Exp Biol ; 224(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494651

RESUMEN

Mammals living at temperate latitudes typically display annual cyclicity in their reproductive activity: births are synchronized when environmental conditions are most favorable. In a majority of these species, day length is the main proximate factor used to anticipate seasonal changes and to adapt physiology. The brain integrates this photoperiodic signal through key hypothalamic structures, which regulate the reproductive axis. In this context, our study aimed to characterize regulations that occur along the hypothalamo-pituitary-gonadal (HPG) axis in male fossorial water voles (Arvicola terrestris, also known as Arvicola amphibius) throughout the year and to further probe the implication of photoperiod in these seasonal regulations. Our monthly field monitoring showed dramatic seasonal changes in the morphology and activity of reproductive organs, as well as in the androgen-dependent lateral scent glands. Moreover, our data uncovered seasonal variations at the hypothalamic level. During the breeding season, kisspeptin expression in the arcuate nucleus (ARC) decreases, while RFRP3 expression in the dorsomedial hypothalamic nucleus (DMH) increases. Our follow-up laboratory study revealed activation of the reproductive axis and confirmed a decrease in kisspeptin expression in males exposed to a long photoperiod (summer condition) compared with those maintained under a short photoperiod (winter condition) that retain all features reminiscent of sexual inhibition. Altogether, our study characterizes neuroendocrine and anatomical markers of seasonal reproductive rhythmicity in male water voles and further suggests that these seasonal changes are strongly impacted by photoperiod.


Asunto(s)
Arvicolinae , Fotoperiodo , Animales , Hipotálamo , Masculino , Reproducción , Estaciones del Año
3.
Gen Comp Endocrinol ; 311: 113853, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34265346

RESUMEN

Seasonally breeding mammals display timely physiological switches between reproductive activity and sexual rest, which ensure synchronisation of births at the most favourable time of the year. These switches correlate with seasonal changes along the hypothalamo-pituitary-gonadal axis, but they are primarily orchestrated at the hypothalamic level through environmental control of KISS1-dependent GnRH release. Our field study shows that births of fossorial water voles, Arvicola terrestris, are concentrated between March and October, which indicates the existence of an annual reproductive cycle in this species. Monthly field monitoring for over a year further reveals dramatic seasonal changes in the morphology of the ovary, uterus and lateral scent glands, which correlate with the reproductive status. Finally, we demonstrate seasonal variation in kisspeptin expression within the hypothalamic arcuate nucleus. Altogether, this study demonstrates a marked rhythm of seasonal breeding in the water vole and we speculate that this is governed by seasonal changes in photoperiod.


Asunto(s)
Arvicolinae , Fotoperiodo , Animales , Femenino , Hipotálamo/metabolismo , Sistemas Neurosecretores , Estaciones del Año
4.
Vitam Horm ; 116: 91-131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33752829

RESUMEN

Seasonal rhythms are a pervasive feature of most living organisms, which underlie yearly timeliness in breeding, migration, hibernation or weight gain and loss. To achieve this, organisms have developed inner timing devices (circannual clocks) that endow them with the ability to predict then anticipate changes to come, usually using daylength as the proximate cue. In Vertebrates, daylength interpretation involves photoperiodic control of TSH production by the pars tuberalis (PT) of the pituitary, which governs a seasonal switch in thyroid hormone (TH) availability in the neighboring hypothalamus. Tanycytes, specialized glial cells lining the third ventricle (3V), are responsible for this TH output through the opposite, PT-TSH-driven, seasonal control of deiodinases 2/3 (Dio 2/3). Tanycytes comprise a photoperiod-sensitive stem cell niche and TH is known to play major roles in cell proliferation and differentiation, which suggests that seasonal control of tanycyte proliferation may be involved in the photoperiodic synchronization of seasonal rhythms. Here we review our current knowledge of the molecular and neuroendocrine pathway linking photoperiodic information to seasonal changes in physiological functions and discuss the potential implication of tanycytes, TH and cell proliferation in seasonal timing.


Asunto(s)
Melatonina , Fotoperiodo , Animales , Hipotálamo/fisiología , Melatonina/metabolismo , Estaciones del Año , Células Madre , Hormonas Tiroideas/fisiología
5.
Theriogenology ; 158: 1-7, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32916519

RESUMEN

Spexin (SPX) is a recently identified peptide hormone of 14 amino acids. Interestingly, Spx and Kiss1 genes share a common ancestor gene. Considering that KISS1 peptides are key controllers of breeding in mammals and circumstantial evidence that SPX regulates gonadotropins in some fish species, we hypothesized that SPX may play a KISS1-related role in sheep. Here, we cloned the ovine Spx cDNA, performed in vivo injection and infusion of SPX (i.c.v. route, with or without concomittant KISS1 presence) and assessed a potential regulation of Spx expression by season, thyroid hormone and estradiol in the medio-basal hypothalamus of the ewe. Our data do not provide support for a role of SPX in the control of the gonadotropic axis in the ewe.


Asunto(s)
Hipotálamo , Kisspeptinas , Animales , Estradiol , Femenino , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Estaciones del Año , Ovinos
6.
J Neuroendocrinol ; 31(5): e12729, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31059174

RESUMEN

Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid-stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF-amide neuropeptides kisspeptin and RFRP3 (RF-amide related peptide 3), are plausible relays between TH and the gonadotrophin-releasing hormone-pituitary-gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research.


Asunto(s)
Relojes Circadianos/fisiología , Sistemas Neurosecretores/fisiología , Hipófisis/fisiología , Animales , Células Ependimogliales/fisiología , Humanos , Hipotálamo/fisiología , Neuronas/fisiología , Fotoperiodo , Estaciones del Año , Hormonas Tiroideas/fisiología
7.
J Neuroendocrinol ; 30(9): e12640, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30129070

RESUMEN

The pars tuberalis (PT) of the pituitary is central to the control of seasonal breeding. In mammals, the PT translates the photoperiodic message carried by melatonin into an endocrine thyroid-stimulating hormone output, which controls local thyroid hormone (TH) signalling in tanycytes of the neighbouring hypothalamus. In the present study, we identify l-dopachrome tautomerase (Dct) as a novel marker of ovine tanycytes and show that Dct displays marked seasonal variations in expression, with higher levels during spring and summer. This seasonal profile is photoperiod-dependent because an acute exposure to long days induces Dct expression. In addition, we find that TH also modulates Dct expression. DCT functions as an enzyme in the melanin synthesis pathway within skin melanocytes, whereas expression in other tissues is comparatively low. We demonstrate that both Tyr and Tyrp1, which are enzymes that intervene upstream and downstream of Dct in the melanin synthesis pathway, respectively, are expressed at very low levels in the ovine hypothalamus. This suggests that Dct in tanycytes may not be involved in melanin synthesis. We speculate that DCT function is linked to its protective role towards oxidative stress and/or its function in the control of neural progenitor cell proliferation.


Asunto(s)
Células Ependimogliales/metabolismo , Regulación de la Expresión Génica , Hipotálamo/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Fotoperiodo , Hormonas Tiroideas/metabolismo , Animales , Ritmo Circadiano/fisiología , Oxidorreductasas Intramoleculares/genética , Melaninas/metabolismo , Melanocitos/metabolismo , Estaciones del Año , Ovinos , Oveja Doméstica
8.
J Neuroendocrinol ; 30(9): e12631, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29972606

RESUMEN

In mammals, melatonin is the hormone responsible for synchronisation of seasonal physiological cycles of physiology to the solar year. Melatonin is secreted by the pineal gland with a profile reflecting the duration of the night and acts via melatonin-responsive cells in the pituitary pars tuberalis (PT), which in turn modulate hypothalamic thyroid hormone status. Recent models suggest that the actions of melatonin in the PT depend critically on day length-dependent changes in the expression of eyes absent 3 (Eya3), which is a coactivator for thyrotrophin ß-subunit (Tshß) gene transcription. According to this model, short photoperiods suppress Eya3 and hence Tshß expression, whereas long photoperiods produce the inverse effect. Studies underpinning this model have relied on step changes in photoperiod (from 8 to 16 hours of light/24 hours) and have not compared the sensitive ranges of photoperiods for changes in Eya3 and Tshß expression with those for relevant downstream molecular and endocrine responses. We therefore performed a "critical day length" experiment in Soay sheep, in which animals acclimated to 8 hours of light/24 hours (SP) were exposed to a range of increased photoperiods spanning the range 11.75 to 16 hours (LP) and then responses at the level of the PT, hypothalamus and hormonal output were assessed. Although Eya3 and Tshß both showed the predicted SP vs LP differences, they responded quite differently to intermediate photoperiods within this range and, at the individual animal level, no clear Eya3-Tshß relationship could be seen. This result is inconsistent with a simple coactivator model for EYA3 action in the PT. Further downstream layers of nonlinearity were also seen in terms of the Tshß-dio2 and the dio2-testosterone relationships. We conclude that the transduction of progressive changes in photoperiod into transitions in endocrine output is an emergent property of a multistep signalling cascade within the mammalian neuroendocrine system.


Asunto(s)
Hipotálamo/metabolismo , Fotoperiodo , Hipófisis/metabolismo , Tirotropina de Subunidad beta/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hormona Folículo Estimulante/sangre , Yoduro Peroxidasa/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Estaciones del Año , Ovinos , Oveja Doméstica , Transducción de Señal/fisiología , Testosterona/sangre , Tirotropina de Subunidad beta/genética
9.
PLoS One ; 13(5): e0197123, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29746548

RESUMEN

This study investigated Vegfa expression in the pars tuberalis (PT) of the pituitary and medio-basal hypothalamus (MBH) of sheep, across seasons and reproductive states. It has recently been proposed that season impacts alternative splicing of Vegfa mRNA in the PT, which shifts the balance between angiogenic VEGFAxxx and anti-angiogenic VEGFAxxxb isoforms (with xxx the number of amino acids of the mature VEGFA proteins) to modulate seasonal breeding. Here, we used various RT-PCR methodologies and analysis of RNAseq datasets to investigate seasonal variation in expression and splicing of the ovine Vegfa gene. Collectively, we identify 5 different transcripts for Vegfa within the ewe PT/MBH, which correspond to splicing events previously described in mouse and human. All identified transcripts encode angiogenic VEGFAxxx isoforms, with no evidence for alternative splicing within exon 8. These findings led us to investigate in detail how "Vegfaxxxb-like" PCR products could be generated by RT-PCR and misidentified as endogenous transcripts, in sheep and human HEK293 cells. In conclusion, our findings do not support the existence of anti-angiogenic VEGFAxxxb isoforms in the ovine PT/MBH and shed new light on the interpretation of prior studies, which claimed to identify Vegfaxxxb isoforms by RT-PCR.


Asunto(s)
Hipotálamo/metabolismo , ARN Mensajero/biosíntesis , Estaciones del Año , Ovinos/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Animales , Femenino , Células HEK293 , Humanos , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Ovinos/genética , Factor A de Crecimiento Endotelial Vascular/genética
10.
Gen Comp Endocrinol ; 179(2): 289-95, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22982975

RESUMEN

The annual cycle of changing day length (photoperiod) is widely used by animals to synchronise their biology to environmental seasonality. In mammals, melatonin is the key hormonal relay for the photoperiodic message, governing thyroid-stimulating hormone (TSH) production in the pars tuberalis (PT) of the pituitary stalk. TSH acts on neighbouring hypothalamic cells known as tanycytes, which in turn control hypothalamic function through effects on thyroid hormone (TH) signalling, mediated by changes in expression of the type II and III deiodinases (Dio2 and Dio3, respectively). Among seasonally breeding rodents, voles of the genus Microtus are notable for a high degree of sensitivity to nutritional and social cues, which act in concert with photoperiod to control reproductive status. In the present study, we investigated whether the TSH/Dio2/Dio3 signalling pathway of female common voles (Microtus arvalis) shows a similar degree of photoperiodic sensitivity to that described in other seasonal mammal species. Additionally, we sought to determine whether the plant metabolite 6-methoxy-2-benzoxazolinone (6-MBOA), described previously as promoting reproductive activation in voles, had any influence on the TSH/Dio2/Dio3 system. Our data demonstrate a high degree of photoperiodic sensitivity in this species, with no observable effects of 6-MBOA on upstream pituitary/hypothalamic gene expression. Further studies are required to characterise how photoperiodic and nutritional signals interact to modulate hypothalamic TH signalling pathways in mammals.


Asunto(s)
Arvicolinae/metabolismo , Benzoxazoles/farmacología , Hipotálamo/metabolismo , Fotoperiodo , Hipófisis/metabolismo , Animales , Femenino , Expresión Génica/efectos de la radiación , Hipotálamo/efectos de los fármacos , Yoduro Peroxidasa/metabolismo , Hipófisis/efectos de los fármacos , Estaciones del Año , Transducción de Señal/efectos de los fármacos , Hormonas Tiroideas/metabolismo , Tirotropina/biosíntesis , Yodotironina Deyodinasa Tipo II
11.
Curr Biol ; 18(15): 1147-52, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18674911

RESUMEN

In mammals, day-length-sensitive (photoperiodic) seasonal breeding cycles depend on the pineal hormone melatonin, which modulates secretion of reproductive hormones by the anterior pituitary gland [1]. It is thought that melatonin acts in the hypothalamus to control reproduction through the release of neurosecretory signals into the pituitary portal blood supply, where they act on pituitary endocrine cells [2]. Contrastingly, we show here that during the reproductive response of Soay sheep exposed to summer day lengths, the reverse applies: Melatonin acts directly on anterior-pituitary cells, and these then relay the photoperiodic message back into the hypothalamus to control neuroendocrine output. The switch to long days causes melatonin-responsive cells in the pars tuberalis (PT) of the anterior pituitary to increase production of thyrotrophin (TSH). This acts locally on TSH-receptor-expressing cells in the adjacent mediobasal hypothalamus, leading to increased expression of type II thyroid hormone deiodinase (DIO2). DIO2 initiates the summer response by increasing hypothalamic tri-iodothyronine (T3) levels. These data and recent findings in quail [3] indicate that the TSH-expressing cells of the PT play an ancestral role in seasonal reproductive control in vertebrates. In mammals this provides the missing link between the pineal melatonin signal and thyroid-dependent seasonal biology.


Asunto(s)
Fotoperiodo , Estaciones del Año , Conducta Sexual Animal/fisiología , Ovinos/fisiología , Tirotropina/metabolismo , Animales , Evolución Biológica , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hipotálamo/metabolismo , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Masculino , Melatonina/metabolismo , Adenohipófisis/metabolismo , Reproducción/fisiología , Transducción de Señal , Tirotropina/farmacología , Tirotropina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA