Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38338903

RESUMEN

Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.


Asunto(s)
Neoplasias de la Mama , Ecosistema , Humanos , Femenino , Mastectomía , Evolución Biológica , Biología Evolutiva
2.
Nutrients ; 12(7)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610481

RESUMEN

Using a placebo-controlled, double-blinded, within-participants, randomized, cross-over design, we examined the neurocognitive effects of a: (a) caffeine-containing, adaptogenic herbal-rich natural energy shot (e+ shot), (b) a matched caffeine-containing shot (caffeine), and, (c) a placebo. Participants (n = 30) were low consumers of caffeine without elevated feelings of energy. Before and three times after beverage consumption, a 27-min battery was used to assess motivation to perform cognitive tasks, mood, attention ((serial subtractions of 3 (SS3) and 7 (SS7), the continuous performance task (CPT), and the rapid visual input processing tasks)), heart rate (HR), blood pressure (BP), and motor coordination (nine-hole peg test) with a 10-min break between each post-consumption battery. The procedure was repeated for each beverage for each participant at least 48 h apart and within 30 min the same time of day using a random group assignment with blinding of researchers and subjects. To evaluate for changes in outcomes, a Treatment × Time analysis of covariance controlling for hours of prior night's sleep was used. Analysis of all outcomes and all treatment comparisons indicated that compared to placebo, both e+ shot ( Δ ¯   = 2.60; η2 = 0.098) and caffeine ( Δ ¯   = 5.30, η2 = 0.098) increased systolic BP 30 min post consumption (still within normal healthy ranges). The caffeine beverage also led to an improvement in most cognitive measures and moods 30-min post-consumption with improvements tapering at 69 and 108 min, while e+ shot noted more steady improvements with no significant differences between beverages on most cognitive and mood measures at 69 and 108 min. However, compared to caffeine, e+ shot noted a significant increase in reaction time at 108 min, while caffeine noted a small change in the opposite direction. No side-effects were reported by any intervention. These results suggest that the specific blend of adaptogens in e+ shot may modulate the neurocognitive effects of caffeine on mood, and cognition.


Asunto(s)
Cafeína/administración & dosificación , Cognición/efectos de los fármacos , Bebidas Energéticas , Preparaciones de Plantas/administración & dosificación , Adulto , Afecto/efectos de los fármacos , Atención/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Estudios Cruzados , Método Doble Ciego , Femenino , Voluntarios Sanos , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Pruebas de Estado Mental y Demencia , Motivación/efectos de los fármacos , Pruebas Neuropsicológicas , Psicofarmacología , Tiempo de Reacción/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA