Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biofouling ; 38(1): 100-117, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35012385

RESUMEN

Carbapenem-resistant Serratia marcescens (CRE-S. marcescens) has recently emerged as an opportunistic human pathogen that causes various nosocomial and respiratory tract infections. The prognosis for CRE-S. marcescens-related infections is very poor and these infections are difficult to treat. This study investigated the synthesis of tea tree oil nanoemulsion (TTO-NE) and its impact on CRE-S. marcescens both in vitro and in vivo. TTO-NE was characterized by dynamic light scattering (DLS) and effectively eradicated bacterial planktonic and sessile forms, reduced bacterial virulence factors, and generated reactive oxygen species (ROS) in the bacterial cell. Notably, TTO-NE was efficient in reducing the colonization of CRE-S. marcescens in a C. elegans in vivo model. The data suggest that TTO-NE might be an excellent tool to combat infections associated with CRE-S. marcescens.


Asunto(s)
Serratia marcescens , Aceite de Árbol de Té , Animales , Antibacterianos/farmacología , Biopelículas , Caenorhabditis elegans , Carbapenémicos/farmacología , Humanos , Aceite de Árbol de Té/farmacología
2.
Braz J Microbiol ; 53(1): 19-32, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35001350

RESUMEN

Bacterial leaf blight (BLB) disease, caused by Xanthomonas oryzae pv. oryzae (Xoo), causes major annual economic losses around the world. Inorganic copper compounds and antibiotics are conventionally used to control BLB disease. They often cause environmental pollution, contributing to adverse effects on human health. Therefore, research is now leading to the search for alternative control methods. Tea tree oil (TTO) is obtained from a traditional medicinal plant, Melaleuca alternifolia, with antibacterial properties. In this study, we found that TTO showed antibacterial activity against Xoo with a minimum inhibitory concentration (MIC) of 18 mg/ml. These antagonistic activities were not limited only to planktonic cells, as further studies have shown that TTO effectively eradicated sessile cells of Xoo in both initial and mature biofilms. Furthermore, it was also observed that TTO reduced various key virulence properties of Xoo, such as swimming, swarming motility, and the production of extracellular polymeric substances, xanthomonadin, and exoenzymes. TTO triggered ROS generation with cell membrane damage as an antibacterial mode of action against Xoo. The in silico study revealed that 1,8-cineole of TTO was effectively bound to two essential proteins, phosphoglucomutase and peptide deformylase, responsible for the synthesis of EPS and bacterial survival, respectively. These antibacterial and anti-virulence activities of TTO against Xoo were further confirmed by an ex vivo virulence assay where TTO significantly reduced the lesion length caused by Xoo on rice leaves. All these data concluded that TTO could be a safe, environment-friendly alternative approach for the comprehensive management of BLB disease.


Asunto(s)
Oryza , Aceite de Árbol de Té , Xanthomonas , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas , Humanos , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Aceite de Árbol de Té/farmacología , Virulencia
3.
Int J Biol Macromol ; 162: 1770-1779, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32810536

RESUMEN

There is a growing interest from the worldwide scientific community in formulating edible- biodegradable coatings to replace non-biodegradable and expensive commercial wax-based coatings for preserving postharvest quality attributes of vegetables including tomatoes. Postharvest tomatoes are a suspected vehicle for both Salmonella and Listeria in food poisoning incidents. In this work, the effectiveness of edible nano-emulsion coatings containing sweet orange essential oil and sodium alginate were prepared and characterized, then evaluated antibacterial and antibiofilm activity against Salmonella and Listeria and simultaneously, examined its coating effect on various quality characteristics of tomatoes at 22 ± 2 °C over a 15 days storage period. DLS (Dynamic light scattering) study revealed stable nanoemulsion formulation with 43.23 nm particle size. The high whiteness index of nanoemulsion has a positive impact on product marketability and desirability. Antibacterial and antibiofilm studies revealed nanoemulsion effectively eradicate both sessile and planktonic forms of Salmonella and Listeria in both single and multi-species culture conditions. Tomatoes coated with edible coating significantly enhanced firmness up to 33%, decreased total mesophilic bacteria including Salmonella and Listeria, and reduced weight loss up to 3 fold lower than uncoated one. Sensory analysis revealed that the use of the edible coating increased the total acceptance scores of tomatoes.


Asunto(s)
Alginatos , Películas Comestibles , Conservación de Alimentos , Enfermedades Transmitidas por los Alimentos/prevención & control , Nanoestructuras/química , Aceites Volátiles , Aceites de Plantas , Alginatos/química , Citrus/química , Emulsiones , Microbiología de Alimentos , Frutas/microbiología , Listeria/efectos de los fármacos , Solanum lycopersicum/microbiología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Aceites de Plantas/química , Aceites de Plantas/farmacología , Salmonella/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA