Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theranostics ; 13(8): 2531-2551, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215570

RESUMEN

Prolonged inflammation after spinal cord injury is detrimental to recovery. To find pharmacological modulators of the inflammation response, we designed a rapid drug screening paradigm in larval zebrafish followed by testing of hit compounds in a mouse spinal cord injury model. Methods: We used reduced il-1ß linked green fluorescent protein (GFP) reporter gene expression as a read-out for reduced inflammation in a screen of 1081 compounds in larval zebrafish. Hit drugs were tested in a moderate contusion model in mice for cytokine regulation, and improved tissue preservation and locomotor recovery. Results: Three compounds robustly reduced il-1ß expression in zebrafish. Cimetidine, an over-the-counter H2 receptor antagonist, also reduced the number of pro-inflammatory neutrophils and rescued recovery after injury in a zebrafish mutant with prolonged inflammation. Cimetidine action on il-1ß expression levels was abolished by somatic mutation of H2 receptor hrh2b, suggesting specific action. In mice, systemic treatment with Cimetidine led to significantly improved recovery of locomotor behavior as compared to controls, accompanied by decreased neuronal tissue loss and a shift towards a pro-regenerative profile of cytokine gene expression. Conclusion: Our screen revealed H2 receptor signaling as a promising target for future therapeutic interventions in spinal cord injury. This work highlights the usefulness of the zebrafish model for rapid screening of drug libraries to identify therapeutics to treat mammalian spinal cord injury.


Asunto(s)
Traumatismos de la Médula Espinal , Pez Cebra , Ratones , Animales , Pez Cebra/metabolismo , Cimetidina/farmacología , Cimetidina/metabolismo , Cimetidina/uso terapéutico , Larva , Evaluación Preclínica de Medicamentos , Traumatismos de la Médula Espinal/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Citocinas/metabolismo , Mamíferos
2.
Neuroscience ; 466: 273-297, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33951502

RESUMEN

Neuroinflammation is a prominent feature of the response to CNS trauma. It is also an important hallmark of various neurodegenerative diseases in which inflammation contributes to the progression of pathology. Inflammation in the CNS can contribute to secondary damage and is therefore an excellent therapeutic target for a range of neurological conditions. Inflammation in the nervous system is complex and varies in its fine details in different conditions. It involves a wide variety of secreted factors such as chemokines and cytokines, cell adhesion molecules, and different cell types that include resident cell of the CNS, as well as immune cells recruited from the peripheral circulation. Added to this complexity is the fact that some aspects of inflammation are beneficial, while other aspects can induce secondary damage in the acute, subacute and chronic phases. Understanding these aspects of the inflammatory profile is essential for developing effective therapies. Bioactive lipids constitute a large group of molecules that modulate the initiation and the resolution of inflammation. Dysregulation of these bioactive lipid pathways can lead to excessive acute inflammation, and failure to resolve this by specialized pro-resolution lipid mediators can lead to the development of chronic inflammation. The focus of this review is to discuss the effects of bioactive lipids in spinal cord trauma and their potential for therapies.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Traumatismos de la Médula Espinal , Humanos , Inflamación/tratamiento farmacológico , Mediadores de Inflamación , Lípidos , Traumatismos de la Médula Espinal/tratamiento farmacológico
3.
Sci Rep ; 10(1): 5874, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32246076

RESUMEN

Complete Freund's adjuvant (CFA) has historically been one of the most useful tools of immunologists. Essentially comprised of dead mycobacteria and mineral oil, we asked ourselves what is special about the mycobacterial part of this adjuvant, and could it be recapitulated synthetically? Here, we demonstrate the essentiality of N-glycolylated peptidoglycan plus trehalose dimycolate (both unique in mycobacteria) for the complete adjuvant effect using knockouts and chemical complementation. A combination of synthetic N-glycolyl muramyl dipeptide and minimal trehalose dimycolate motif GlcC14C18 was able to upregulate dendritic cell effectors, plus induce experimental autoimmunity qualitatively similar but quantitatively milder compared to CFA. This research outlines how to substitute CFA with a consistent, molecularly-defined adjuvant which may inform the design of immunotherapeutic agents and vaccines benefitting from cell-mediated immunity. We also anticipate using synthetic microbe-associated molecular patterns (MAMPs) to study mycobacterial immunity and immunopathogenesis.


Asunto(s)
Adyuvante de Freund/metabolismo , Mycobacterium/metabolismo , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Animales , Células Dendríticas/metabolismo , Femenino , Adyuvante de Freund/farmacología , Inmunidad Celular/efectos de los fármacos , Lectinas Tipo C/metabolismo , Ganglios Linfáticos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Adaptadora de Señalización NOD2/metabolismo , Peptidoglicano/metabolismo
4.
Neurobiol Dis ; 81: 93-107, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25724358

RESUMEN

Iron accumulation occurs in the CNS in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). However, the mechanisms underlying such iron accumulation are not fully understood. We studied the expression and cellular localization of molecules involved in cellular iron influx, storage, and efflux. This was assessed in two mouse models of EAE: relapsing-remitting (RR-EAE) and chronic (CH-EAE). The expression of molecules involved in iron homeostasis was assessed at the onset, peak, remission/progressive and late stages of the disease. We provide several lines of evidence for iron accumulation in the EAE spinal cord which increases with disease progression and duration, is worse in CH-EAE, and is localized in macrophages and microglia. We also provide evidence that there is a disruption of the iron efflux mechanism in macrophages/microglia that underlie the iron accumulation seen in these cells. Macrophages/microglia also lack expression of the ferroxidases (ceruloplasmin and hephaestin) which have antioxidant effects. In contrast, astrocytes which do not accumulate iron, show robust expression of several iron influx and efflux proteins and the ferroxidase ceruloplasmin which detoxifies ferrous iron. Astrocytes therefore are capable of efficiently recycling iron from sites of EAE lesions likely into the circulation. We also provide evidence of marked dysregulation of mitochondrial function and energy metabolism genes, as well as of NADPH oxidase genes in the EAE spinal cord. This data provides the basis for the selective iron accumulation in macrophage/microglia and further evidence of severe mitochondrial dysfunction in EAE. It may provide insights into processes underling iron accumulation in MS and other neurodegenerative diseases in which iron accumulation occurs.


Asunto(s)
Encefalomielitis Autoinmune Experimental/complicaciones , Encefalomielitis Autoinmune Experimental/patología , Ferritinas/metabolismo , Trastornos del Metabolismo del Hierro/etiología , Hierro/metabolismo , Médula Espinal/metabolismo , Animales , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Femenino , Ferritinas/genética , Adyuvante de Freund/toxicidad , Proteína Ácida Fibrilar de la Glía/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/toxicidad , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Médula Espinal/patología , Médula Espinal/ultraestructura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA