Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Alcohol Clin Exp Res ; 46(9): 1657-1664, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35904282

RESUMEN

BACKGROUND: Individual variation in the physiological response to alcohol is predictive of an individual's likelihood to develop alcohol use disorder (AUD). Evidence from diverse model organisms indicates that the levels of long-chain polyunsaturated omega-3 fatty acids (ω-3 LC-PUFAs) can modulate the behavioral response to ethanol and therefore may impact the propensity to develop AUD. While most ω-3 LC-PUFAs come from diet, humans can produce these fatty acids from shorter chain precursors through a series of enzymatic steps. Natural variation in the genes encoding these enzymes has been shown to affect ω-3 LC-PUFA levels. We hypothesized that variation in these genes could contribute to the susceptibility to develop AUD. METHODS: We identified nine genes (FADS1, FADS2, FADS3, ELOVL2, GCKR, ELOVL1, ACOX1, APOE, and PPARA) that are required to generate ω-3 LC-PUFAs and/or have been shown or predicted to affect ω-3 LC-PUFA levels. Using both set-based and gene-based analyses we examined their association with AUD and two AUD-related phenotypes, alcohol consumption, and an externalizing phenotype. RESULTS: We found that the set of nine genes is associated with all three phenotypes. When examined individually, GCKR, FADS2, and ACOX1 showed significant association signals with alcohol consumption. GCKR was significantly associated with AUD. ELOVL1 and APOE were associated with externalizing. CONCLUSIONS: Taken together with observations that dietary ω-3 LC-PUFAs can affect ethanol-related phenotypes, this work suggests that these fatty acids provide a link between the environmental and genetic influences on the risk of developing AUD.


Asunto(s)
Alcoholismo , Ácidos Grasos Omega-3 , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Apolipoproteínas E , Etanol , Ácidos Grasos , Ácidos Grasos Insaturados , Humanos
2.
J Sleep Res ; 31(3): e13385, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34850995

RESUMEN

The relationship between sleep and cognition has long been recognized, with slow-wave sleep thought to play a critical role in long-term memory consolidation. Recent research has presented the possibility that non-invasive acoustic stimulation during sleep could enhance memory consolidation. Herein, we report a random-effects model meta-analysis examining the impact of this intervention on memory and sleep architecture in healthy adults. Sixteen studies were identified through a systematic search. We found a medium significant effect of acoustic stimulation on memory task performance (g = 0.68, p = .031) in young adults <35 years of age, but no statistically significant effect in adults >35 years of age (g = -0.83, p = .223). In young adults, there was a large statistically significant effect for declarative memory tasks (g = 0.87, p = .014) but no effect for non-declarative tasks (g = -0.25, p = .357). There were no statistically significant differences in polysomnography-derived sleep architecture values between sham and stimulation conditions in either young or older adults. Based on these results, it appears that acoustic stimulation during sleep may only be an effective intervention for declarative memory consolidation in young adults. However, the small number of studies in this area, their small sample sizes, the short-term nature of most investigations and the high between-studies heterogeneity highlight a need for high-powered and long-term experiments to better elucidate, and subsequently maximise, any potential benefits of this novel approach.


Asunto(s)
Consolidación de la Memoria , Sueño de Onda Lenta , Estimulación Acústica/métodos , Adulto , Anciano , Humanos , Consolidación de la Memoria/fisiología , Polisomnografía , Sueño/fisiología , Sueño de Onda Lenta/fisiología , Adulto Joven
3.
Alcohol Clin Exp Res ; 43(12): 2620-2626, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31589770

RESUMEN

BACKGROUND: The levels of the ω-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been associated with alcohol sensitivity in vertebrate and invertebrate model systems, but prior studies have not examined this association in human samples despite evidence of associations between ω-3 LC-PUFA levels and alcohol-related phenotypes. Both alcohol sensitivity and ω-3 LC-PUFA levels are impacted by genetic factors, and these influences may contribute to observed associations between phenotypes. Given the potential for using EPA and DHA supplementation in adjuvant care for alcohol misuse and other outcomes, it is important to clarify how ω-3 LC-PUFA levels relate to alcohol sensitivity. METHODS: Analyses were conducted using data from the Avon Longitudinal Study of Parents and Children. Plasma ω-3 LC-PUFA levels were measured at ages 15.5 and 17.5. Participants reported on their initial alcohol sensitivity using the early drinking Self-Rating of the Effects of Alcohol (SRE-5) scale, for which more drinks needed for effects indicates lower levels of response per drink, at ages 15.5, 16.5, and 17.5. Polygenic liability for alcohol consumption, alcohol problems, EPA levels, and DHA levels was derived using summary statistics from large, publicly available datasets. Linear regressions were used to examine the cross-sectional and longitudinal associations between ω-3 LC-PUFA levels and SRE scores. RESULTS: Age 15.5 ω-3 LC-PUFA levels were negatively associated with contemporaneous SRE scores and with age 17.5 SRE scores. One modest association (p = 0.02) between polygenic liability and SRE scores was observed, between alcohol problems-based polygenic risk scores (PRS) and age 16.5 SRE scores. Tests of moderation by genetic liability were not warranted. CONCLUSIONS: Plasma ω-3 LC-PUFA levels may be related to initial sensitivity to alcohol during adolescence. These data indicate that diet-related factors have the potential to impact humans' earliest responses to alcohol exposure.


Asunto(s)
Consumo de Bebidas Alcohólicas/sangre , Trastornos Relacionados con Alcohol/sangre , Ácidos Docosahexaenoicos/sangre , Ácido Eicosapentaenoico/sangre , Ácidos Grasos Omega-3/sangre , Consumo de Alcohol en Menores , Adolescente , Factores de Edad , Bases de Datos Factuales/estadística & datos numéricos , Femenino , Humanos , Masculino , Herencia Multifactorial , Autoinforme
4.
Alcohol Clin Exp Res ; 42(8): 1476-1485, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29786878

RESUMEN

BACKGROUND: Complex interactions between environmental and genetic factors influence the risk of developing alcohol use disorder (AUD) in humans. To date, studies of the impact of environment on AUD risk have primarily focused on psychological characteristics or on the effects of developmental exposure to ethanol (EtOH). We recently observed that modifying levels of the long-chain ω-3 (LC ω-3) fatty acid, eicosapentaenoic acid (EPA), alters acute physiological responses to EtOH in Caenorhabditis elegans. Because mammals derive ω-3 fatty acids from their diet, here we asked if manipulating dietary levels of LC ω-3 fatty acids can affect EtOH-responsive behaviors in mice. METHODS: We used 2 well-characterized inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), which differ in their responses to EtOH. Age-matched young adult male mice were maintained on isocaloric diets that differed only by being enriched or depleted in LC ω-3 fatty acids. Animals were subsequently tested for acute EtOH sensitivity (locomotor activation and sedation), voluntary consumption, and metabolism. Fat deposition was also determined. RESULTS: We found that dietary levels of LC ω-3s altered EtOH sensitivity and consumption in a genotype-specific manner. Both B6 and D2 animals fed high LC ω-3 diets demonstrated lower EtOH-induced locomotor stimulation than those fed low LC ω-3 diets. EtOH sedation and EtOH metabolism were greater in D2, but not B6 mice on the high LC ω-3 diet. Conversely, LC ω-3 dietary manipulation altered EtOH consumption in B6, but not in D2 mice. B6 mice on a high LC ω-3 diet consumed more EtOH in a 2-bottle choice intermittent access model than B6 mice on a low LC ω-3 diet. CONCLUSIONS: Because EtOH sensitivity is predictive of risk of developing AUD in humans, our data indicate that dietary LC ω-3 levels should be evaluated for their impact on AUD risk in humans. Further, these studies indicate that genetic background can interact with fatty acids in the diet to significantly alter EtOH-responsive behaviors.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Conducta Animal/efectos de los fármacos , Dieta , Etanol/farmacología , Ácidos Grasos Omega-3/administración & dosificación , Alcoholismo/fisiopatología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Especificidad de la Especie
5.
PLoS One ; 9(8): e105999, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25162400

RESUMEN

Alcohol addiction is a widespread societal problem, for which there are few treatments. There are significant genetic and environmental influences on abuse liability, and understanding these factors will be important for the identification of susceptible individuals and the development of effective pharmacotherapies. In humans, the level of response to alcohol is strongly predictive of subsequent alcohol abuse. Level of response is a combination of counteracting responses to alcohol, the level of sensitivity to the drug and the degree to which tolerance develops during the drug exposure, called acute functional tolerance. We use the simple and well-characterized nervous system of Caenorhabditis elegans to model the acute behavioral effects of ethanol to identify genetic and environmental factors that influence level of response to ethanol. Given the strong molecular conservation between the neurobiological machinery of worms and humans, cellular-level effects of ethanol are likely to be conserved. Increasingly, variation in long-chain polyunsaturated fatty acid levels has been implicated in complex neurobiological phenotypes in humans, and we recently found that fatty acid levels modify ethanol responses in worms. Here, we report that 1) eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, is required for the development of acute functional tolerance, 2) dietary supplementation of eicosapentaenoic acid is sufficient for acute tolerance, and 3) dietary eicosapentaenoic acid can alter the wild-type response to ethanol. These results suggest that genetic variation influencing long-chain polyunsaturated fatty acid levels may be important abuse liability loci, and that dietary polyunsaturated fatty acids may be an important environmental modulator of the behavioral response to ethanol.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Depresores del Sistema Nervioso Central/antagonistas & inhibidores , Suplementos Dietéticos , Ácido Eicosapentaenoico/farmacología , Etanol/antagonistas & inhibidores , Alcoholismo/metabolismo , Alcoholismo/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Modelos Animales de Enfermedad , Tolerancia a Medicamentos , Etanol/farmacología , Humanos , Metabolismo de los Lípidos , Actividad Motora/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA