Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Tissue Barriers ; : 2300580, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38179897

RESUMEN

Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defense of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection. While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies.

2.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085618

RESUMEN

Hyperbaric oxygen (HBO) is widely applied to treat several hypoxia-related diseases. Previous studies have focused on the immediate effect of HBO-exposure induced oxidative stress on the lungs, but knowledge regarding the chronic effects from repetitive HBO exposure is limited, especially at the gene expression level. We found that repetitive HBO exposure did not alter the morphology of murine lungs. However, by deconvolution of RNA-seq from those mice lungs using CIBERSORTx and the expression profile matrices of 8 mesenchymal cell subtypes obtained from bleomycin-treated mouse lungs, we identify several mesenchymal cell subtype changes. These include increases in Col13a1 matrix fibroblasts, mesenchymal progenitors and mesothelial cell populations and decreases in lipofibroblasts, endothelial and Pdgfrb high cell populations. Our data suggest that repetitive HBO exposure may affect biological processes in the lungs such as response to wounding, extracellular matrix, vasculature development and immune response.


Asunto(s)
Oxigenoterapia Hiperbárica , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , RNA-Seq , Animales , Regulación de la Expresión Génica , Ontología de Genes , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/patología
3.
Allergy ; 75(3): 576-587, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31512243

RESUMEN

BACKGROUND: Hundreds of plant species release their pollen into the air every year during early spring. During that period, pollen allergic as well as non-allergic patients frequently present to doctors with severe respiratory tract infections. Our objective was therefore to assess whether pollen may interfere with antiviral immunity. METHODS: We combined data from real-life human exposure cohorts, a mouse model and human cell culture to test our hypothesis. RESULTS: Pollen significantly diminished interferon-λ and pro-inflammatory chemokine responses of airway epithelia to rhinovirus and viral mimics and decreased nuclear translocation of interferon regulatory factors. In mice infected with respiratory syncytial virus, co-exposure to pollen caused attenuated antiviral gene expression and increased pulmonary viral titers. In non-allergic human volunteers, nasal symptoms were positively correlated with airborne birch pollen abundance, and nasal birch pollen challenge led to downregulation of type I and -III interferons in nasal mucosa. In a large patient cohort, numbers of rhinoviruspositive cases were correlated with airborne birch pollen concentrations. CONCLUSION: The ability of pollen to suppress innate antiviral immunity, independent of allergy, suggests that high-risk population groups should avoid extensive outdoor activities when pollen and respiratory virus seasons coincide.


Asunto(s)
Inmunidad Innata , Polen/efectos adversos , Virus Sincitiales Respiratorios , Rhinovirus , Animales , Humanos , Interferones , Ratones , Mucosa Nasal
4.
Eur Respir J ; 42(1): 87-97, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23143548

RESUMEN

The airway epithelium forms a physical, chemical and immunological barrier against inhaled environmental substances. In asthma, these barrier properties are thought to be abnormal. In this study, we analysed the effect of grass pollen on the physical and immunological barrier properties of differentiated human primary bronchial epithelial cells. Following exposure to Timothy grass (Phleum pratense) pollen extract, the integrity of the physical barrier was not impaired as monitored by measuring the transepithelial resistance and immunofluorescence staining of tight junction proteins. In contrast, pollen exposure affected the immunological barrier properties by modulating vectorial mediator release. CXC chemokine ligand (CXCL)8/interleukin (IL)-8 showed the greatest increase in response to pollen exposure with preferential release to the apical compartment. Inhibition of the extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways selectively blocked apical CXCL8/IL-8 release via a post-transcriptional mechanism. Apical release of CC chemokine ligand (CCL)20/macrophage inflammatory protein-3α, CCL22/monocyte-derived chemokine and tumour necrosis factor-α was significantly increased only in severe asthma cultures, while CCL11/eotaxin-1 and CXCL10/interferon-γ-induced protein-10 were reduced in nonasthmatic cultures. The bronchial epithelial barrier modulates polarised release of mediators in response to pollen without direct effects on its physical barrier properties. The differential response of cells from normal and asthmatic donors suggests the potential for the bronchial epithelium to promote immune dysfunction in asthma.


Asunto(s)
Asma/inmunología , Bronquios/patología , Células Epiteliales/patología , Extractos Vegetales/química , Polen/química , Alérgenos/química , Asma/metabolismo , Broncoscopía , Células Cultivadas , Quimiocinas/inmunología , Humanos , Inflamación , Interleucina-8/inmunología , Ligandos , Poaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA