Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 150(4): 947-954, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753512

RESUMEN

BACKGROUND: Prospective genetic evaluation of patients at this referral research hospital presents clinical research challenges. OBJECTIVES: This study sought not only a single-gene explanation for participants' immune-related presentations, but viewed each participant holistically, with the potential to have multiple genetic contributions to their immune phenotype and other heritable comorbidities relevant to their presentation and health. METHODS: This study developed a program integrating exome sequencing, chromosomal microarray, phenotyping, results return with genetic counseling, and reanalysis in 1505 individuals from 1000 families with suspected or known inborn errors of immunity. RESULTS: Probands were 50.8% female, 71.5% were ≥18 years, and had diverse immune presentations. Overall, 327 of 1000 probands (32.7%) received 361 molecular diagnoses. These included 17 probands with diagnostic copy number variants, 32 probands with secondary findings, and 31 probands with multiple molecular diagnoses. Reanalysis added 22 molecular diagnoses, predominantly due to new disease-gene associations (9 of 22, 40.9%). One-quarter of the molecular diagnoses (92 of 361) did not involve immune-associated genes. Molecular diagnosis was correlated with younger age, male sex, and a higher number of organ systems involved. This program also facilitated the discovery of new gene-disease associations such as SASH3-related immunodeficiency. A review of treatment options and ClinGen actionability curations suggest that at least 251 of 361 of these molecular diagnoses (69.5%) could translate into ≥1 management option. CONCLUSIONS: This program contributes to our understanding of the diagnostic and clinical utility whole exome analysis on a large scale.


Asunto(s)
Exoma , Pruebas Genéticas , Exoma/genética , Femenino , Pruebas Genéticas/métodos , Genómica , Humanos , Masculino , Fenotipo , Estudios Prospectivos
2.
Front Med (Lausanne) ; 4: 62, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28603714

RESUMEN

Traditionally, the use of genomic information for personalized medical decisions relies on prior discovery and validation of genotype-phenotype associations. This approach constrains care for patients presenting with undescribed problems. The National Institutes of Health (NIH) Undiagnosed Diseases Program (UDP) hypothesized that defining disease as maladaptation to an ecological niche allows delineation of a logical framework to diagnose and evaluate such patients. Herein, we present the philosophical bases, methodologies, and processes implemented by the NIH UDP. The NIH UDP incorporated use of the Human Phenotype Ontology, developed a genomic alignment strategy cognizant of parental genotypes, pursued agnostic biochemical analyses, implemented functional validation, and established virtual villages of global experts. This systematic approach provided a foundation for the diagnostic or non-diagnostic answers provided to patients and serves as a paradigm for scalable translational research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA