Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
mBio ; 10(3)2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213551

RESUMEN

Cryptococcus neoformans causes deadly mycosis primarily in AIDS patients, whereas Cryptococcus gattii infects mostly non-HIV patients, even in regions with high burdens of HIV/AIDS and an established environmental presence of C. gattii As HIV induces type I IFN (t1IFN), we hypothesized that t1IFN would differentially affect the outcome of C. neoformans and C. gattii infections. Exogenous t1IFN induction using stabilized poly(I·C) (pICLC) improved murine outcomes in either cryptococcal infection. In C. neoformans-infected mice, pICLC activity was associated with C. neoformans containment and classical Th1 immunity. In contrast, pICLC activity against C. gattii did not require any immune factors previously associated with C. neoformans immunity: T, B, and NK cells, IFN-γ, and macrophages were all dispensable. Interestingly, C. gattii pICLC activity depended on ß-2-microglobulin, which impacts iron levels among other functions. Iron supplementation reversed pICLC activity, suggesting C. gattii pICLC activity requires iron limitation. Also, pICLC induced a set of iron control proteins, some of which were directly inhibitory to cryptococcus in vitro, suggesting t1IFN regulates iron availability in the pulmonary air space fluids. Thus, exogenous induction of t1IFN significantly improves the outcome of murine infection by C. gattii and C. neoformans but by distinct mechanisms; the C. gattii effect was mediated by iron limitation, while the effect on C. neoformans infection was through induction of classical T-cell-dependent immunity. Together this difference in types of T-cell-dependent t1IFN immunity for different Cryptococcus species suggests a possible mechanism by which HIV infection may select against C. gattii but not C. neoformansIMPORTANCECryptococcus neoformans and Cryptococcus gattii cause fatal infection in immunodeficient and immunocompetent individuals. While these fungi are sibling species, C. gattii infects very few AIDS patients, while C. neoformans infection is an AIDS-defining illness, suggesting that the host response to HIV selects C. neoformans over C. gattii We used a viral mimic molecule (pICLC) to stimulate the immune response, and pICLC treatment improved mouse outcomes from both species. pICLC-induced action against C. neoformans was due to activation of well-defined immune pathways known to deter C. neoformans, whereas these immune pathways were dispensable for pICLC treatment of C. gattii Since these immune pathways are eventually destroyed by HIV/AIDS, our data help explain why the antiviral immune response in AIDS patients is unable to control C. neoformans infection but is protective against C. gattii Furthermore, pICLC induced tighter control of iron in the lungs of mice, which inhibited C. gattii, thus suggesting an entirely new mode of nutritional immunity activated by viral signals.


Asunto(s)
Criptococosis/inmunología , Criptococosis/prevención & control , Interferón Tipo I/farmacología , Hierro/metabolismo , Linfocitos T/inmunología , Animales , Cryptococcus gattii/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Hierro/administración & dosificación , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Poli I-C/administración & dosificación , Células TH1
2.
mBio ; 9(2)2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29588403

RESUMEN

Invasive aspergillosis (IA) remains the primary cause of morbidity and mortality in chronic granulomatous disease (CGD) patients, often due to infection by Aspergillus species refractory to antifungals. This motivates the search for alternative treatments, including immunotherapy. We investigated the effect of exogenous type I interferon (IFN) activation on the outcome of IA caused by three Aspergillus species, A. fumigatus, A. nidulans, and A. tanneri, in CGD mice. The animals were treated with poly(I):poly(C) carboxymethyl cellulose poly-l-lysine (PICLC), a mimetic of double-stranded RNA, 24 h preinfection and postinfection. The survival rates and lung fungal burdens were markedly improved by PICLC immunotherapy in animals infected with any one of the three Aspergillus species. While protection from IA was remarkable, PICLC induction of type I IFN in the lungs surged 24 h posttreatment and returned to baseline levels by 48 h, suggesting that PICLC altered early events in protection against IA. Immunophenotyping of recruited leukocytes and histopathological examination of tissue sections showed that PICLC induced similar cellular infiltrates as those in untreated-infected mice, in both cases dominated by monocytic cells and neutrophils. However, the PICLC immunotherapy resulted in a marked earlier recruitment of the leukocytes. Unlike with conidia, infection with A. nidulans germlings reduced the protective effect of PICLC immunotherapy. Additionally, antibody depletion of neutrophils totally reversed the protection, suggesting that neutrophils are crucial for PICLC-mediated protection. Together, these data show that prophylactic PICLC immunotherapy prerecruits these cells, enabling them to attack the conidia and thus resulting in a profound protection from IA.IMPORTANCE Patients with chronic granulomatous disease (CGD) are highly susceptible to invasive aspergillosis (IA). While Aspergillus fumigatus is the most-studied Aspergillus species, CGD patients often suffer IA caused by A. nidulans, A. tanneri, and other rare species. These non-fumigatus Aspergillus species are more resistant to antifungal drugs and cause higher fatality rates than A. fumigatus Therefore, alternative therapies are needed to protect CGD patients. We report an effective immunotherapy of mice infected with three Aspergillus species via PICLC dosing. While protection from IA was long lasting, PICLC induction of type I IFN surged but quickly returned to baseline levels, suggesting that PICLC was altering early events in IA. Interestingly, we found responding immune cells to be similar between PICLC-treated and untreated-infected mice. However, PICLC immunotherapy resulted in an earlier recruitment of the leukocytes and suppressed fungal growth. This study highlights the value of type I IFN induction in CGD patients.


Asunto(s)
Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Aspergillus/patogenicidad , Enfermedad Granulomatosa Crónica/tratamiento farmacológico , Enfermedad Granulomatosa Crónica/microbiología , Interferón Tipo I/uso terapéutico , Pulmón/metabolismo , Pulmón/microbiología , Neutrófilos/citología , Animales , Aspergilosis/inmunología , Aspergilosis/microbiología , Citometría de Flujo , Enfermedad Granulomatosa Crónica/inmunología , Pulmón/inmunología , Masculino , Ratones , Ratones Noqueados , Neutrófilos/efectos de los fármacos
3.
J Physiol ; 595(24): 7347-7368, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28994159

RESUMEN

KEY POINTS: Endothelial cell function in resistance arteries integrates Ca2+ signalling with hyperpolarization to promote relaxation of smooth muscle cells and increase tissue blood flow. Whether complementary signalling occurs in lymphatic endothelium is unknown. Intracellular calcium and membrane potential were evaluated in endothelial cell tubes freshly isolated from mouse collecting lymphatic vessels of the popliteal fossa. Resting membrane potential measured using intracellular microelectrodes averaged ∼-70 mV. Stimulation of lymphatic endothelium by acetylcholine or a TRPV4 channel agonist increased intracellular Ca2+ with robust depolarization. Findings from Trpv4-/- mice and with computational modelling suggest that the initial mobilization of intracellular Ca2+ leads to influx of Ca2+ and Na+ through TRPV4 channels to evoke depolarization. Lymphatic endothelial cells lack the Ca2+ -activated K+ channels present in arterial endothelium to generate endothelium-derived hyperpolarization. Absence of this signalling pathway with effective depolarization may promote rapid conduction of contraction along lymphatic muscle during lymph propulsion. ABSTRACT: Subsequent to a rise in intracellular Ca2+ ([Ca2+ ]i ), hyperpolarization of the endothelium coordinates vascular smooth muscle relaxation along resistance arteries during blood flow control. In the lymphatic vasculature, collecting vessels generate rapid contractions coordinated along lymphangions to propel lymph, but the underlying signalling pathways are unknown. We tested the hypothesis that lymphatic endothelial cells (LECs) exhibit Ca2+ and electrical signalling properties that facilitate lymph propulsion. To study electrical and intracellular Ca2+ signalling dynamics in lymphatic endothelium, we excised collecting lymphatic vessels from the popliteal fossa of mice and removed their muscle cells to isolate intact LEC tubes (LECTs). Intracellular recording revealed a resting membrane potential of ∼-70 mV. Acetylcholine (ACh) increased [Ca2+ ]i with a time course similar to that observed in endothelium of resistance arteries (i.e. rapid initial peak with a sustained 'plateau'). In striking contrast to the endothelium-derived hyperpolarization (EDH) characteristic of arteries, LECs depolarized (>15 mV) to either ACh or TRPV4 channel activation. This depolarization was facilitated by the absence of Ca2+ -activated K+ (KCa ) channels as confirmed with PCR, persisted in the absence of extracellular Ca2+ , was abolished by LaCl3 and was attenuated ∼70% in LECTs from Trpv4-/- mice. Computational modelling of ion fluxes in LECs indicated that omitting K+ channels supports our experimental results. These findings reveal novel signalling events in LECs, which are devoid of the KCa activity abundant in arterial endothelium. Absence of EDH with effective depolarization of LECs may promote the rapid conduction of contraction waves along lymphatic muscle during lymph propulsion.


Asunto(s)
Señalización del Calcio , Endotelio Vascular/metabolismo , Vasos Linfáticos/metabolismo , Potenciales de la Membrana , Acetilcolina/farmacología , Animales , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Leucina/análogos & derivados , Leucina/farmacología , Vasos Linfáticos/efectos de los fármacos , Vasos Linfáticos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Sulfonamidas/farmacología , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA