Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Tissue Eng Regen Med ; 20(4): 523-538, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36892736

RESUMEN

During high-throughput drug screening, in vitro models are fabricated and the effects of therapeutics on the models evaluated in high throughput-for example, with automated liquid handling systems and microplate reader-based high-throughput screening (HTS) assays. The most frequently-used model systems for HTS, 2D models, do not adequately model the in vivo 3D microenvironment-an important aspect of which is the extracellular matrix-and therefore, 2D models may not be appropriate for drug screening. Instead, tissue-engineered 3D models with extracellular matrix-mimicking components are destined to become the preferred in vitro systems for HTS. However, for 3D models, such as 3D cell-laden hydrogels and scaffolds, cell sheets, and spheroids as well as 3D microfluidic and organ-on-a-chip systems, to replace 2D models in HTS, they must be compatible with high-throughput fabrication schemes and evaluation methods. In this review, we summarize HTS in 2D models and discuss recent studies that have successfully demonstrated HTS-compatible 3D models of high-impact diseases, such as cancers or cardiovascular diseases.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Neoplasias , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Evaluación Preclínica de Medicamentos , Ingeniería de Tejidos , Hidrogeles/farmacología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA