Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Physiol ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38348606

RESUMEN

We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.

2.
Redox Biol ; 36: 101673, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32810739

RESUMEN

High-intensity exercise damages mitochondrial DNA (mtDNA) in skeletal muscle. Whether MitoQ - a redox active mitochondrial targeted quinone - can reduce exercise-induced mtDNA damage is unknown. In a double-blind, randomized, placebo-controlled design, twenty-four healthy male participants consisting of two groups (placebo; n = 12, MitoQ; n = 12) performed an exercise trial of 4 x 4-min bouts at 90-95% of heart rate max. Participants completed an acute (20 mg MitoQ or placebo 1-h pre-exercise) and chronic (21 days of supplementation) phase. Blood and skeletal muscle were sampled immediately pre- and post-exercise and analysed for nuclear and mtDNA damage, lipid hydroperoxides, lipid soluble antioxidants, and the ascorbyl free radical. Exercise significantly increased nuclear and mtDNA damage across lymphocytes and muscle (P < 0.05), which was accompanied with changes in lipid hydroperoxides, ascorbyl free radical, and α-tocopherol (P < 0.05). Acute MitoQ treatment failed to impact any biomarker likely due to insufficient initial bioavailability. However, chronic MitoQ treatment attenuated nuclear (P < 0.05) and mtDNA damage in lymphocytes and muscle tissue (P < 0.05). Our work is the first to show a protective effect of chronic MitoQ supplementation on the mitochondrial and nuclear genomes in lymphocytes and human muscle tissue following exercise, which is important for genome stability.


Asunto(s)
Antioxidantes , ADN Mitocondrial , Antioxidantes/metabolismo , Antioxidantes/farmacología , ADN Mitocondrial/metabolismo , Método Doble Ciego , Humanos , Masculino , Mitocondrias/metabolismo , Compuestos Organofosforados/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/metabolismo , Ubiquinona/farmacología
3.
Nutrients ; 11(6)2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159211

RESUMEN

Exercise-induced reactive oxygen and nitrogen species are increasingly considered as beneficial health promotion. Astaxanthin (ASX) has been recognized as a potent antioxidant suitable for human ingestion. We investigated whether ASX administration suppressed antioxidant enzyme activity in moderate-intensity exercise. Seven-week-old male C57BL/6 mice (n = 8/group) were treated with ASX (5, 15, and 30 mg/kg BW) combined with 45 min/day moderate-intensity swimming training for four weeks. Results showed that the mice administrated with 15 and 30 mg/kg of ASX decreased glutathione peroxidase, catalase, malondialdehyde, and creatine kinase levels in plasma or muscle, compared with the swimming control group. Beyond that, these two (15 and 30 mg/kg BW) dosages of ASX downregulated gastrocnemius muscle erythroid 2p45 (NF-E2)-related factor 2 (Nrf2). Meanwhile, mRNA of Nrf2 and Nrf2-dependent enzymes in mice heart were also downregulated in the ASX-treated groups. However, the mice treated with 15 or 30 mg/kg ASX had increased constitutive nitric oxidase synthase and superoxide dismutase activity, compared with the swimming and sedentary control groups. Our findings indicate that high-dose administration of astaxanthin can blunt antioxidant enzyme activity and downregulate transcription of Nrf2 and Nrf2-dependent enzymes along with attenuating plasma and muscle MDA.


Asunto(s)
Antioxidantes/metabolismo , Condicionamiento Físico Animal , Natación/fisiología , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Xantófilas/administración & dosificación , Xantófilas/farmacología
4.
Antioxidants (Basel) ; 7(5)2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29883433

RESUMEN

Plant-based nutraceuticals are categorised as nutritional supplements which contain a high concentration of antioxidants with the intention of minimising the deleterious effect of an oxidative insult. The primary aim of this novel study was to determine the effect of exogenous barley-wheat grass juice (BWJ) on indices of exercise-induced oxidative stress. Ten (n = 10) apparently healthy, recreationally trained (V̇O2max 55.9 ± 6 mL·kg−1·min−1), males (age 22 ± 2 years, height 181 ± 6 cm, weight 87 ± 8 kg, body mass index (BMI) 27 ± 1) volunteered to participant in the study. In a randomised, double-blinded, placebo-controlled crossover design, participants consumed either a placebo, a low dose (70 mL per day) of BWJ, or a high dose (140 mL per day) of BWJ for 7-days. Experimental exercise consisted of a standard maximal oxygen uptake test until volitional fatigue. DNA damage, as assessed by the single cell gel electrophoresis comet assay, increased following high intensity exercise across all groups (time × group; p < 0.05, Effect Size (ES) = 0.7), although there was no selective difference for intervention (p > 0.05). There was a main effect for time in lipid hydroperoxide concentration (pooled-group data, pre- vs. post-exercise, p < 0.05, ES = 0.2) demonstrating that exercise increased lipid peroxidation. Superoxide dismutase activity (SOD) increased by 44.7% following BWJ supplementation (pooled group data, pre- vs. post). The ascorbyl free radical (p < 0.05, ES = 0.26), α-tocopherol (p = 0.007, ES = 0.2), and xanthophyll (p = 0.000, ES = 0.5), increased between the pre- and post-exercise time points indicating a main effect of time. This study illustrates that a 7-day supplementation period of a novel plant-derived nutraceutical product is insufficient at attenuating exercise-induced oxidative damage. It is possible that with a larger sample size, and longer supplementation period, this novel plant-based nutraceutical could potentially offer effective prophylaxis against exercise-induced oxidative stress; as such, this justifies the need for further research.

5.
Nutrients ; 8(8)2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27548212

RESUMEN

This study examined the effects of beetroot juice (BTJ) on recovery between two repeated-sprint tests. In an independent groups design, 20 male, team-sports players were randomized to receive either BTJ or a placebo (PLA) (2 × 250 mL) for 3 days after an initial repeated sprint test (20 × 30 m; RST1) and after a second repeated sprint test (RST2), performed 72 h later. Maximal isometric voluntary contractions (MIVC), countermovement jumps (CMJ), reactive strength index (RI), pressure-pain threshold (PPT), creatine kinase (CK), C-reactive protein (hs-CRP), protein carbonyls (PC), lipid hydroperoxides (LOOH) and the ascorbyl free radical (A(•-)) were measured before, after, and at set times between RST1 and RST2. CMJ and RI recovered quicker in BTJ compared to PLA after RST1: at 72 h post, CMJ and RI were 7.6% and 13.8% higher in BTJ vs. PLA, respectively (p < 0.05). PPT was 10.4% higher in BTJ compared to PLA 24 h post RST2 (p = 0.012) but similar at other time points. No group differences were detected for mean and fastest sprint time or fatigue index. MIVC, or the biochemical markers measured (p > 0.05). BTJ reduced the decrement in CMJ and RI following and RST but had no effect on sprint performance or oxidative stress.


Asunto(s)
Rendimiento Atlético , Beta vulgaris/química , Entrenamiento de Intervalos de Alta Intensidad , Músculo Esquelético/efectos de los fármacos , Extractos Vegetales/farmacología , Recuperación de la Función/efectos de los fármacos , Atletas , Método Doble Ciego , Ingestión de Líquidos , Jugos de Frutas y Vegetales , Humanos , Masculino , Fatiga Muscular/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Esfuerzo Físico/efectos de los fármacos , Adulto Joven
6.
Nutrients ; 6(2): 829-43, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24566440

RESUMEN

This investigation examined the impact of Montmorency tart cherry concentrate (MC) on physiological indices of oxidative stress, inflammation and muscle damage across 3 days simulated road cycle racing. Trained cyclists (n = 16) were divided into equal groups and consumed 30 mL of MC or placebo (PLA), twice per day for seven consecutive days. A simulated, high-intensity, stochastic road cycling trial, lasting 109 min, was completed on days 5, 6 and 7. Oxidative stress and inflammation were measured from blood samples collected at baseline and immediately pre- and post-trial on days 5, 6 and 7. Analyses for lipid hydroperoxides (LOOH), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), interleukin-1-beta (IL-1-ß), high-sensitivity C-reactive protein (hsCRP) and creatine kinase (CK) were conducted. LOOH (p < 0.01), IL-6 (p < 0.05) and hsCRP (p < 0.05) responses to trials were lower in the MC group versus PLA. No group or interaction effects were found for the other markers. The attenuated oxidative and inflammatory responses suggest MC may be efficacious in combating post-exercise oxidative and inflammatory cascades that can contribute to cellular disruption. Additionally, we demonstrate direct application for MC in repeated days cycling and conceivably other sporting scenario's where back-to-back performances are required.


Asunto(s)
Antioxidantes/farmacología , Ciclismo/fisiología , Frutas , Estrés Oxidativo , Prunus/química , Fenómenos Fisiológicos en la Nutrición Deportiva , Adulto , Bebidas , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Suplementos Dietéticos , Método Doble Ciego , Humanos , Inflamación/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , Interleucina-8/sangre , Masculino , Músculo Esquelético/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Adulto Joven
7.
Med Sci Sports Exerc ; 45(8): 1469-77, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23470303

RESUMEN

INTRODUCTION: Although pharmacological antioxidants have previously been investigated for a prophylactic effect against exercise oxidative stress, it is not known if α-lipoic acid supplementation can protect against DNA damage after high-intensity isolated quadriceps exercise. This randomized controlled investigation was designed to test the hypothesis that 14 d of α-lipoic acid supplementation can attenuate exercise-induced oxidative stress. METHODS: Twelve (n = 12) apparently healthy male participants (age = 28 ± 10 yr, stature = 177 ± 12 cm and body mass = 81 ± 15 kg) were randomly assigned to receive either a daily supplement of 1000 mg of α-lipoic acid (2 × 500-mg tablets) for 14 d (n = 6) or receive no supplement (n = 6) in a double-blinded experimental approach. Blood and muscle biopsy tissue samples were taken at rest and after the completion of 100 isolated and continuous maximal knee extension (minimum force = 200 N, speed of contraction = 60° · s(-1)). RESULTS: Exercise increased mitochondrial 8-hydroxy-2-deoxyguanosine (8-OHdG) concentration in both groups (P < 0.05 vs rest) with a concomitant decrease in total antioxidant capacity (P < 0.05 vs rest). There was a marked increase in blood total antioxidant capacity after oral α-lipoic acid supplementation (P < 0.05 vs nonsupplemented), whereas DNA damage (Comet assay and 8-OHdG), lipid peroxidation, and hydrogen peroxide increased after exercise in the nonsupplemented group only (P < 0.05 vs supplemented). Exercise increased protein oxidation in both groups (P < 0.05 vs rest). CONCLUSIONS: These findings suggest that short-term α-lipoic acid supplementation can selectively protect DNA (but not in muscle mitochondria) and lipids against exercise-induced oxidative stress.


Asunto(s)
Antioxidantes/uso terapéutico , Daño del ADN/efectos de los fármacos , ADN Mitocondrial/efectos de los fármacos , Ejercicio Físico/fisiología , Mitocondrias Musculares/efectos de los fármacos , Contracción Muscular/fisiología , Ácido Tióctico/uso terapéutico , 8-Hidroxi-2'-Desoxicoguanosina , Adulto , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Suplementos Dietéticos , Método Doble Ciego , Humanos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido , Masculino , Mitocondrias Musculares/metabolismo , Estrés Oxidativo/efectos de los fármacos , Adulto Joven
8.
Br J Nutr ; 109(2): 293-301, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-22475430

RESUMEN

Pharmacological antioxidant vitamins have previously been investigated for a prophylactic effect against exercise-induced oxidative stress. However, large doses are often required and may lead to a state of pro-oxidation and oxidative damage. Watercress contains an array of nutritional compounds such as ß-carotene and α-tocopherol which may increase protection against exercise-induced oxidative stress. The present randomised controlled investigation was designed to test the hypothesis that acute (consumption 2 h before exercise) and chronic (8 weeks consumption) watercress supplementation can attenuate exercise-induced oxidative stress. A total of ten apparently healthy male subjects (age 23 (SD 4) years, stature 179 (SD 10) cm and body mass 74 (SD 15) kg) were recruited to complete the 8-week chronic watercress intervention period (and then 8 weeks of control, with no ingestion) of the experiment before crossing over in order to compete the single-dose acute phase (with control, no ingestion). Blood samples were taken at baseline (pre-supplementation), at rest (pre-exercise) and following exercise. Each subject completed an incremental exercise test to volitional exhaustion following chronic and acute watercress supplementation or control. The main findings show an exercise-induced increase in DNA damage and lipid peroxidation over both acute and chronic control supplementation phases (P< 0.05 v. supplementation), while acute and chronic watercress attenuated DNA damage and lipid peroxidation and decreased H2O2 accumulation following exhaustive exercise (P< 0.05 v. control). A marked increase in the main lipid-soluble antioxidants (α-tocopherol, γ-tocopherol and xanthophyll) was observed following watercress supplementation (P< 0.05 v. control) in both experimental phases. These findings suggest that short- and long-term watercress ingestion has potential antioxidant effects against exercise-induced DNA damage and lipid peroxidation.


Asunto(s)
Daño del ADN , Regulación hacia Abajo , Ejercicio Físico , Leucocitos Mononucleares/inmunología , Peroxidación de Lípido , Estrés Oxidativo , Verduras , Adulto , Antioxidantes/administración & dosificación , Antioxidantes/análisis , Brassica , Estudios Cruzados , Fatiga/sangre , Fatiga/inmunología , Fatiga/metabolismo , Alimentos Funcionales , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Nasturtium , Hojas de la Planta , Factores de Tiempo , Reino Unido , Adulto Joven
9.
Lipids Health Dis ; 10: 217, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22107734

RESUMEN

Obese subjects with impaired glucose tolerance (IGT) are more susceptible than healthy individuals to oxidative stress and cardiovascular disease. This randomised controlled investigation was designed to test the hypothesis that α-lipoic acid supplementation and exercise training may elicit favourable clinical changes in obese subjects with IGT. All data were collected from 24 obese (BMI ≥ 30 kg/m2) IGT patients. Following participant randomisation into two groups, fasting venous blood samples were obtained at baseline, and before and following intervention. The first group consisted of 12 participants who completed a 12 week control phase followed by 12 weeks of chronic exercise at 65% HRmax for 30 minutes a day, 5 days per week, while ingesting 1 gram per day of α-lipoic acid for 12 weeks. The second group consisted of 12 participants who completed the same 12 week control phase, but this was followed by 12 weeks of 1 gram per day of α-lipoic acid supplementation only (no exercise). The main findings show a comparatively greater rate of low density lipoprotein (LDL) oxidation in the group consisting of α-lipoic acid only (p < 0.05 vs. pre intervention), although total oxidant status was lower post intervention (p < 0.05 vs. baseline) in this group. However, exercise and α-lipoic acid in combination attenuates LDL oxidation. Furthermore, in the α-lipoic acid supplement plus exercise training group, total antioxidant capacity was significantly increased (p < 0.05 vs. baseline and pre intervention). Body fat percentage and waist and hip circumference decreased following exercise training (p < 0.05 vs. post intervention). There were no selective treatment differences for a range of other clinical outcomes including glycaemic regulation (p > 0.05). These findings report that α-lipoic acid ingestion may increase the atherogenicity of LDL when ingested in isolation of exercise, suggesting that in IGT the use of this antioxidant treatment does not ameliorate metabolic disturbances, but instead may detrimentally contribute to the pathogenesis of atherosclerosis and development of CVD. However, when α-lipoic acid is combined with exercise, this atherogenic effect is abolished.


Asunto(s)
Antioxidantes/uso terapéutico , Enfermedades Cardiovasculares/prevención & control , Terapia por Ejercicio , Trastornos del Metabolismo de la Glucosa/terapia , Obesidad/terapia , Ácido Tióctico/uso terapéutico , Antioxidantes/farmacología , Glucemia , Composición Corporal/efectos de los fármacos , Enfermedades Cardiovasculares/etiología , Ingestión de Energía , Femenino , Trastornos del Metabolismo de la Glucosa/complicaciones , Hemoglobina Glucada/metabolismo , Hemodinámica , Humanos , Lipoproteínas/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Oxidación-Reducción , Factores de Riesgo , Ácido Tióctico/farmacología , Resultado del Tratamiento
10.
Free Radic Biol Med ; 35(3): 284-91, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12885590

RESUMEN

Strenuous, long-duration aerobic exercise results in endotoxemia due to increased plasma levels of lipopolysaccharide (LPS) leading to cytokine release, oxidative stress, and altered gastrointestinal function. However, the effect of short-term strenuous aerobic exercise either with or without antioxidant supplementation on exercise-induced endotoxemia is unknown. A significant increase in the concentration of bacterial LPS (endotoxin) was noted in the venous circulation of healthy volunteers following maximal acute aerobic exercise (0.14(-1) pre-exercise vs. 0.24(-1) postexercise, p <0.01). Plasma nitrite concentration also increased with exercise (0.09 +/- 0.05 nM x ml(-1) vs. 0.14 +/- 0.01 nM x ml(-1), p <0.05) as did ascorbate free radical levels (0.02 +/- 0.001 vs. 0.03 +/- 0.002 arbitrary units, p <0.05). Oral ascorbic acid supplementation (1000 mg) significantly increased plasma ascorbic acid concentration (29.45 mM x l(-1) to 121.22 mM x l(-1), p <0.05), and was associated with a decrease in plasma LPS and nitrite concentration before and after exercise (LPS: 0.01(-1); nitrite: 0.02 +/- 0.02 nM x ml(-1) vs. 0.02 +/- 0.03 nM x ml(-1)). Ascorbic acid supplementation led to a significant increase in ascorbate free radical levels both before (0.04 +/- 0.01 arbitrary units) and after exercise (0.06 +/- 0.02 arbitrary units, p <0.05). In conclusion, strenuous short-term aerobic exercise results in significant increases in plasma LPS levels (endotoxemia) together with increases in markers of oxidative stress. Supplementation with ascorbic acid, however, abolished the increase in LPS and nitrite but led to a significant increase in the ascorbate radical in plasma. The amelioration of exercise-induced endotoxemia by antioxidant pretreatment implies that it is a free radical-mediated process while the use of the ascorbate radical as a marker of oxidative stress in supplemented systems is limited.


Asunto(s)
Ácido Ascórbico/farmacología , Suplementos Dietéticos , Endotoxemia/tratamiento farmacológico , Ejercicio Físico , Adolescente , Adulto , Antioxidantes/farmacología , Ácido Ascórbico/sangre , Radicales Libres , Humanos , Lipopolisacáridos/metabolismo , Masculino , Óxido Nítrico , Nitritos/metabolismo , Estrés Oxidativo , Factores de Tiempo , Xantina Oxidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA