Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JIMD Rep ; 31: 63-71, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27117294

RESUMEN

Deficiency of the mitochondrial trifunctional protein (TFP) and long-chain 3-Hydroxy Acyl-CoA dehydrogenase (LCHAD) impairs long-chain fatty acid oxidation and presents with hypoglycemia, cardiac, liver, eye, and muscle involvement. Without treatment, both conditions can be life-threatening. These diseases are identified by newborn screening (NBS), but the impact of early treatment on long-term clinical outcome is unknown. Moreover, there is lack of consensus on treatment, particularly on the use of carnitine supplementation. Here, we report clinical and biochemical data in five patients with TFP/LCHAD deficiency, three of whom were diagnosed by newborn screening. All patients had signs and symptoms related to their metabolic disorder, including hypoglycemia, elevated creatine kinase (CK), and rhabdomyolysis, and experienced episodes of metabolic decompensation triggered by illness. Treatment was started shortly after diagnosis in all patients and consisted of a diet low in long-chain fats supplemented with medium chain triglycerides (MCT), essential fatty acids, and low-dose carnitine (25 mg/kg/day). Patients had growth restriction early in life that resolved after 2 years of age. All patients but the youngest (2 years old) developed pigmentary retinopathy. Long-chain hydroxylated acylcarnitines did not change significantly with age, but increased during acute illnesses. Free carnitine levels were maintained within the normal range and did not correlate with long-chain hydroxylated acylcarnitines. These results show that patients with LCHAD deficiency can have normal growth and development with appropriate treatment. Low-dose carnitine supplements prevented carnitine deficiency and did not result in increased long-chain hydroxylated acylcarnitines or any specific toxicity.

2.
Mol Genet Metab ; 118(3): 167-172, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27324284

RESUMEN

Pyridoxine-Dependent Epilepsy (PDE) is a recessive disorder caused by deficiency of α-aminoadipic semialdehyde dehydrogenase in the catabolic pathway of lysine. It is characterized by intractable seizures controlled by the administration of pharmacological doses of vitamin B6. Despite seizure control with pyridoxine, intellectual disability and developmental delays are still observed in some patients with PDE, likely due to the accumulation of toxic intermediates in the lysine catabolic pathway: alpha-aminoadipic semialdehyde (AASA), delta-1-piperideine-6-carboxylate (P6C), and pipecolic acid. Here we evaluate biochemical and clinical parameters in two PDE patients treated with a lysine-restricted diet and arginine supplementation (100-150mg/kg), aimed at reducing the levels of PDE biomarkers. Lysine restriction resulted in decreased accumulation of PDE biomarkers and improved development. Plasma lysine but not plasma arginine, directly correlated with plasma levels of AASA-P6C (p<0.001, r(2)=0.640) and pipecolic acid (p<0.01, r(2)=0.484). In addition, plasma threonine strongly correlated with the levels of AASA-P6C (p<0.0001, r(2)=0.732) and pipecolic acid (p<0.005, r(2)=0.527), suggesting extreme sensitivity of threonine catabolism to pyridoxine availability. Our results further support the use of dietary therapies in combination with pyridoxine for the treatment of PDE.


Asunto(s)
Arginina/administración & dosificación , Biomarcadores/sangre , Epilepsia/dietoterapia , Lisina/sangre , Preescolar , Suplementos Dietéticos , Epilepsia/metabolismo , Femenino , Humanos , Lactante , Lisina/deficiencia , Masculino , Ácidos Pipecólicos/sangre , Estudios Retrospectivos , Sacaropina Deshidrogenasas/sangre , Resultado del Tratamiento
3.
JIMD Rep ; 2: 87-90, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23430858

RESUMEN

Primary carnitine deficiency (PCD) is an autosomal recessive disorder of fatty acid oxidation caused by mutations in the SLC22A5 gene encoding for the carnitine transporter OCTN2. Carnitine uptake deficiency results in renal carnitine wasting and low plasma levels. PCD usually presents early in life either with acute metabolic crisis or as progressive cardiomyopathy that responds to carnitine supplementation. PCD inclusion in the newborn screening (NBS) programs has led to the identification of asymptomatic adult patients ascertained because of a positive NBS in their offspring. We extensively reviewed the literature and found that 15 of 42 adult published cases (35.7%) were symptomatic. Cardiac arrhythmias were present in five patients (12%). Here, we report the ascertainment and long-term follow-up of the first case of PCD presenting with long QT syndrome. The patient presented in her early twenties with a syncopal episode caused by ventricular tachycardia, and a prolonged QT interval. Arrhythmias were poorly controlled by pharmacologic therapy and a defibrillator was installed. Syncopal episodes escalated during her first pregnancy. A positive NBS in the patient's child suggested a carnitine uptake deficiency, which was confirmed by reduced carnitine transporter activity and by molecular testing. After starting carnitine supplementation, no further syncopal episodes have occurred and the QT interval returned to normal. As precaution, a low-dose metoprolol therapy and the defibrillator are still in place. Although rare, PCD should be ruled out as a cause of cardiac arrhythmias since oral carnitine supplementation is readily available and efficient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA