Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Horm Behav ; 121: 104666, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31899262

RESUMEN

Neuromedin U (NMU) is a highly conserved neuropeptide that has been implicated in the stress response. To better understand how it influences various aspects of the stress response, we studied the effects of intracerebroventricular NMU-8 administration on stress-related behavior and activity of the hypothalamus-pituitary-adrenal (HPA) axis in male C57BL/6J mice. We investigated these NMU-8 effects when mice remained in their home cage and when they were challenged by exposure to forced swim stress. NMU-8 administration resulted in increased grooming behavior in mice that remained in their home cage and in a significant increase in c-Fos immunoreactivity in the paraventricular hypothalamus (PVH) and arcuate nucleus (ARC). Surprisingly, NMU-8 administration significantly decreased plasma corticosterone concentrations. Furthermore, NMU-8 administration increased immobility in the forced swim test in both naïve mice and mice that were previously exposed to swim stress. The effect of NMU-8 on c-Fos immunoreactivity in the PVH was dependent on previous exposure to swim stress given that we observed no significant changes in mice exposed for the first time to swim stress. In contrast, in the ARC we observed a significant increase in c-Fos immunoreactivity regardless of previous stress exposure. Interestingly, NMU-8 administration also significantly decreased plasma corticosterone concentrations in mice that were exposed to single forced swim stress, while this effect was no longer observed when mice were exposed to forced swim stress for a second time. Taken together, our data indicate that NMU-8 regulates stress responsiveness and suggests that its effects depend on previous stress exposure.


Asunto(s)
Corticosterona/sangre , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Neuropéptidos/farmacología , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Estrés Psicológico/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Corticosterona/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Psicológico/sangre , Estrés Psicológico/fisiopatología , Natación/psicología
2.
Proc Natl Acad Sci U S A ; 113(10): E1382-91, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26903620

RESUMEN

Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions.


Asunto(s)
Aprendizaje por Asociación/fisiología , Corteza Cerebral/fisiología , Plasticidad Neuronal/fisiología , Receptor de Serotonina 5-HT2A/fisiología , Tálamo/fisiología , Animales , Western Blotting , Corteza Cerebral/metabolismo , Fenómenos Electrofisiológicos , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Plasticidad Neuronal/genética , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiología , Proteína Quinasa C/metabolismo , Ratas Sprague-Dawley , Receptor de Serotonina 5-HT2A/genética , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Tálamo/metabolismo , Fosfolipasas de Tipo C/metabolismo
3.
Nature ; 519(7544): 455-9, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25600269

RESUMEN

Appropriate responses to an imminent threat brace us for adversities. The ability to sense and predict threatening or stressful events is essential for such adaptive behaviour. In the mammalian brain, one putative stress sensor is the paraventricular nucleus of the thalamus (PVT), an area that is readily activated by both physical and psychological stressors. However, the role of the PVT in the establishment of adaptive behavioural responses remains unclear. Here we show in mice that the PVT regulates fear processing in the lateral division of the central amygdala (CeL), a structure that orchestrates fear learning and expression. Selective inactivation of CeL-projecting PVT neurons prevented fear conditioning, an effect that can be accounted for by an impairment in fear-conditioning-induced synaptic potentiation onto somatostatin-expressing (SOM(+)) CeL neurons, which has previously been shown to store fear memory. Consistently, we found that PVT neurons preferentially innervate SOM(+) neurons in the CeL, and stimulation of PVT afferents facilitated SOM(+) neuron activity and promoted intra-CeL inhibition, two processes that are critical for fear learning and expression. Notably, PVT modulation of SOM(+) CeL neurons was mediated by activation of the brain-derived neurotrophic factor (BDNF) receptor tropomysin-related kinase B (TrkB). As a result, selective deletion of either Bdnf in the PVT or Trkb in SOM(+) CeL neurons impaired fear conditioning, while infusion of BDNF into the CeL enhanced fear learning and elicited unconditioned fear responses. Our results demonstrate that the PVT-CeL pathway constitutes a novel circuit essential for both the establishment of fear memory and the expression of fear responses, and uncover mechanisms linking stress detection in PVT with the emergence of adaptive behaviour.


Asunto(s)
Núcleo Amigdalino Central/fisiología , Miedo/fisiología , Vías Nerviosas/fisiología , Tálamo/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Núcleo Amigdalino Central/citología , Condicionamiento Psicológico/fisiología , Miedo/psicología , Femenino , Masculino , Memoria/fisiología , Ratones , Vías Nerviosas/citología , Plasticidad Neuronal , Neuronas/metabolismo , Receptor trkB/metabolismo , Somatostatina/metabolismo , Tálamo/citología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA