Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Vis Exp ; (204)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38372384

RESUMEN

In vitro drug sensitivity screens are important tools in the discovery of anti-cancer drug combination therapies. Typically, these in vitro drug screens are performed on cells grown in a monolayer. However, these two-dimensional (2D) models are considered less accurate compared to three-dimensional (3D) spheroid cell models; this is especially true for glioma stem cell lines. Cells grown in spheres activate different signaling pathways and are considered more representative of in vivo models than monolayer cell lines. This protocol describes a method for in vitro drug screening of spheroid lines; mouse and human glioma stem cell lines are used as an example. This protocol describes a 3D spheroid drug sensitivity and synergy assay that can be used to determine if a drug or drug combination induces cell death and if two drugs synergize. Glioma stem cell lines are modified to express RFP. Cells are plated in low attachment round well bottom 96 plates, and spheres are allowed to form overnight. Drugs are added, and the growth is monitored by measuring the RFP signal over time using the Incucyte live imaging system, a fluorescence microscope embedded in the tissue culture incubator. Half maximal inhibitory concentration (IC50), median lethal dose (LD50), and synergy score are subsequently calculated to evaluate sensitivities to drugs alone or in combination. The three-dimensional nature of this assay provides a more accurate reflection of tumor growth, behavior, and drug sensitivities in vivo, thus forming the basis for further preclinical investigation.


Asunto(s)
Glioma , Esferoides Celulares , Humanos , Ratones , Animales , Evaluación Preclínica de Medicamentos/métodos , Línea Celular Tumoral , Esferoides Celulares/patología , Glioma/patología , Células Madre Neoplásicas/patología
2.
Am J Med Genet A ; 176(5): 1258-1269, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29681099

RESUMEN

Organized and hosted by the Children's Tumor Foundation (CTF), the Neurofibromatosis (NF) conference is the premier annual gathering for clinicians and researchers interested in neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN). The 2016 edition constituted a blend of clinical and basic aspects of NF research that helped in clarifying different advances in the field. The incorporation of next generation sequencing is changing the way genetic diagnostics is performed for NF and related disorders, providing solutions to problems like genetic heterogeneity, overlapping clinical manifestations, or the presence of mosaicism. The transformation from plexiform neurofibroma (PNF) to malignant peripheral nerve sheath tumor (MPNST) is being clarified, along with new management and treatments for benign and premalignant tumors. Promising new cellular and in vivo models for understanding the musculoskeletal abnormalities in NF1, the development of NF2 or SWN associated schwannomas, and clarifying the cells that give rise to NF1-associated optic pathway glioma were presented. The interaction of neurofibromin and SPRED1 was described comprehensively, providing functional insight that will help in the interpretation of pathogenicity of certain missense variants identified in NF1 and Legius syndrome patients. Novel promising imaging techniques are being developed, as well as new integrative and holistic management models for patients that take into account psychological, social, and biological factors. Importantly, new therapeutic approaches for schwannomas, meningiomas, ependymomas, PNF, and MPNST are being pursued. This report highlights the major advances that were presented at the 2016 CTF NF conference.


Asunto(s)
Neurilemoma/diagnóstico , Neurilemoma/etiología , Neurofibromatosis/diagnóstico , Neurofibromatosis/etiología , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/etiología , Neurofibromatosis 2/diagnóstico , Neurofibromatosis 2/etiología , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/etiología , Animales , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Técnicas de Diagnóstico Molecular , Neurilemoma/terapia , Neurofibromatosis/terapia , Neurofibromatosis 1/terapia , Neurofibromatosis 2/terapia , Neoplasias Cutáneas/terapia , Investigación Biomédica Traslacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA