Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biophotonics ; 12(11): e201900135, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31265175

RESUMEN

In this study, we used Raman spectroscopy as a new tool to investigate pathological conditions at the level of chemical bond alterations in biological tissues. Currently, there have been no reports on the spectroscopic alterations caused by diabetic neuropathy in the dorsal root ganglia (DRG). DRG are a target for the treatment of neuropathic pain, and the need for more effective therapies is increasing. Photobiomodulation therapy (PBMT) through infrared low-level laser irradiation (904 nm) has shown analgesic effects on the treatment of neuropathy. Thus, the aim of this study was to use Raman spectroscopy to characterize the spectral DRG identities of streptozotocin (STZ)-induced diabetic neuropathic (hyperalgesic) rats and to study the influence of PBMT over such spectra. Characteristic DRG peaks were identified at 2704, 2850, 2885, 2940, 3061 and 3160 cm-1 , whose assignments are CH2 /CH3 symmetric/asymmetric stretches, and C─H vibrations of lipids and proteins. DRG from hyperalgesic rats showed an increased normalized intensity of 2704, 2850, 2885 and 3160 cm-1 . These same peaks had their normalized intensity reduced after PBMT treatment, accompanied by an anti-hyperalgesic effect. Raman spectroscopy was able to diagnose spectral alterations in DRG of hyperalgesic rats and the PBMT reduced the intensity of hyperalgesia and the altered Raman spectra.


Asunto(s)
Neuropatías Diabéticas/inducido químicamente , Neuropatías Diabéticas/terapia , Ganglios Espinales , Terapia por Luz de Baja Intensidad , Espectrometría Raman , Estreptozocina/farmacología , Animales , Masculino , Ratas
2.
Microsc Res Tech ; 75(10): 1383-94, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22648907

RESUMEN

In this work, we proposed and built a multimodal optical setup that extends a commercially available confocal microscope (Olympus VF300) to include nonlinear second harmonic generation (SHG) and third harmonic generation (THG) optical (NLO) microscopy and fluorescence lifetime imaging microscopy (FLIM). We explored all the flexibility offered by this commercial confocal microscope to include the nonlinear microscopy capabilities. The setup allows image acquisition with confocal, brightfield, NLO/multiphoton and FLIM imaging. Simultaneously, two-photon excited fluorescence (TPEF) and SHG are well established in the biomedical imaging area, because one can use the same ultrafast laser and detectors set to acquire both signals simultaneously. Because the integration with FLIM requires a separated modulus, there are fewer reports of TPEF+SHG+FLIM in the literature. The lack of reports of a TPEF+SHG+THG+FLIM system is mainly due to difficulties with THG because the present NLO laser sources generate THG in an UV wavelength range incompatible with microscope optics. In this article, we report the development of an easy-to-operate platform capable to perform two-photon fluorescence (TPFE), SHG, THG, and FLIM using a single 80 MHz femtosecond Ti:sapphire laser source. We described the modifications over the confocal system necessary to implement this integration and verified the presence of SHG and THG signals by several physical evidences. Finally, we demonstrated the use of this integrated system by acquiring images of vegetables and epithelial cancer biological samples.


Asunto(s)
Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Adenocarcinoma Mucinoso/patología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Cebollas/citología , Neoplasias Ováricas/patología , Solanum tuberosum/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA