Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecology ; 98(8): 2111-2119, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28500779

RESUMEN

Arbuscular mycorrhizal fungi (AMF) can increase plant fitness under certain environmental conditions. Among the mechanisms that may drive this mutualism, the most studied is provisioning of nutrients by AMF in exchange for carbon from plant hosts. However, AMF may also provide a suite of non-nutritional benefits to plants including improved water uptake, disease resistance, plant chemical defense, soil aggregation, and allelochemical transport and protection. Here, we use a meta-analysis of 93 studies to assess the relative effect of AMF on nutritional and non-nutritional factors that may influence plant fitness. We find that the positive effects of AMF on soil aggregation, water flow and disease resistance are equal to the effect of AMF on plant nitrogen and phosphorus uptake. However, AMF had no effect on the uptake of other nutrients, plant water content, allelopathic transport or production of chemical defense compounds. We suggest future research directions, including experimentally assessing the relative contribution on plant fitness of AMF interactions by untangling the independence of alternative benefits of AMF from an increase in nutrient uptake. This will lead to a more holistic view of the mycorrhizal-plant association and a more accurate picture of the net impact on the plant or plant community in question.


Asunto(s)
Micorrizas/fisiología , Plantas/microbiología , Microbiología del Suelo , Nitrógeno/metabolismo , Fósforo/metabolismo , Raíces de Plantas , Suelo , Simbiosis
2.
Mycorrhiza ; 27(4): 311-319, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27924430

RESUMEN

Nitrogen (N) and phosphorus (P) deposition are increasing worldwide largely due to increased fertilizer use and fossil fuel combustion. Most work with N and P deposition in natural ecosystems has focused on temperate, highly industrialized, regions. Tropical regions are becoming more developed, releasing large amounts of these nutrients into the atmosphere. Nutrient enrichment in nutrient-poor systems such as tropical montane forest can represent a relatively large shift in nutrient availability, especially for sensitive microorganisms such as arbuscular mycorrhizal fungi (AMF). These symbiotic fungi are particularly critical, given their key role in ecosystem processes affecting plant community structure and function.To better understand the consequences of nutrient deposition in plant communities, a long-term nutrient addition experiment was set up in a tropical montane forest in the Andes of southern Ecuador. In this study, we investigated the impacts of 7 years of elevated N and P on AMF root colonization potential (AMF-RCP) through a greenhouse bait plant method in which we quantified root colonization. We also examined the relationship between AMF-RCP and rarefied tree diversity.After 7 years of nutrient addition, AMF-RCP was negatively correlated with soil P, positively correlated with soil N, and positively correlated with rarefied tree diversity. Our results show that AMF in this tropical montane forest are directly affected by soil N and P concentrations, but may also be indirectly impacted by shifts in rarefied tree diversity. Our research also highlights the need to fully understand the benefits and drawbacks of using different sampling methods (e.g., AMF-RCP versus direct root sampling) to robustly examine AMF-plant interactions in the future.


Asunto(s)
Bosques , Micorrizas/fisiología , Nitrógeno/fisiología , Fósforo/fisiología , Ecuador , Hongos , Raíces de Plantas/microbiología , Suelo/química , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA