Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 592(7855): 583-589, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854233

RESUMEN

The Pacific region is of major importance for addressing questions regarding human dispersals, interactions with archaic hominins and natural selection processes1. However, the demographic and adaptive history of Oceanian populations remains largely uncharacterized. Here we report high-coverage genomes of 317 individuals from 20 populations from the Pacific region. We find that the ancestors of Papuan-related ('Near Oceanian') groups underwent a strong bottleneck before the settlement of the region, and separated around 20,000-40,000 years ago. We infer that the East Asian ancestors of Pacific populations may have diverged from Taiwanese Indigenous peoples before the Neolithic expansion, which is thought to have started from Taiwan around 5,000 years ago2-4. Additionally, this dispersal was not followed by an immediate, single admixture event with Near Oceanian populations, but involved recurrent episodes of genetic interactions. Our analyses reveal marked differences in the proportion and nature of Denisovan heritage among Pacific groups, suggesting that independent interbreeding with highly structured archaic populations occurred. Furthermore, whereas introgression of Neanderthal genetic information facilitated the adaptation of modern humans related to multiple phenotypes (for example, metabolism, pigmentation and neuronal development), Denisovan introgression was primarily beneficial for immune-related functions. Finally, we report evidence of selective sweeps and polygenic adaptation associated with pathogen exposure and lipid metabolism in the Pacific region, increasing our understanding of the mechanisms of biological adaptation to island environments.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Genética de Población , Genoma Humano/genética , Genómica , Migración Humana/historia , Islas , Nativos de Hawái y Otras Islas del Pacífico/genética , Animales , Australia , Conjuntos de Datos como Asunto , Asia Oriental , Introgresión Genética , Historia Antigua , Humanos , Hombre de Neandertal/genética , Oceanía , Océano Pacífico , Taiwán
2.
Cancer Discov ; 11(10): 2524-2543, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33893148

RESUMEN

Pediatric liver cancers (PLC) comprise diverse diseases affecting infants, children, and adolescents. Despite overall good prognosis, PLCs display heterogeneous response to chemotherapy. Integrated genomic analysis of 126 pediatric liver tumors showed a continuum of driver mechanisms associated with patient age, including new targetable oncogenes. In 10% of patients with hepatoblastoma, all before three years old, we identified a mosaic premalignant clonal expansion of cells altered at the 11p15.5 locus. Analysis of spatial and longitudinal heterogeneity revealed an important plasticity between "hepatocytic," "liver progenitor," and "mesenchymal" molecular subgroups of hepatoblastoma. We showed that during chemotherapy, "liver progenitor" cells accumulated massive loads of cisplatin-induced mutations with a specific mutational signature, leading to the development of heavily mutated relapses and metastases. Drug screening in PLC cell lines identified promising targets for cisplatin-resistant progenitor cells, validated in mouse xenograft experiments. These data provide new insights into cisplatin resistance mechanisms in PLC and suggest alternative therapies. SIGNIFICANCE: PLCs are deadly when they resist chemotherapy, with limited alternative treatment options. Using a multiomics approach, we identified PLC driver genes and the cellular phenotype at the origin of cisplatin resistance. We validated new treatments targeting these molecular features in cell lines and xenografts.This article is highlighted in the In This Issue feature, p. 2355.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias Hepáticas/tratamiento farmacológico , Adolescente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Genómica , Hepatoblastoma/tratamiento farmacológico , Hepatoblastoma/genética , Humanos , Lactante , Neoplasias Hepáticas/genética , Masculino , Recurrencia Local de Neoplasia , Fenotipo
3.
Curr Biol ; 31(5): 1072-1083.e10, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33434506

RESUMEN

The transition from the Late Neolithic to the Bronze Age has witnessed important population and societal changes in western Europe.1 These include massive genomic contributions of pastoralist herders originating from the Pontic-Caspian steppes2,3 into local populations, resulting from complex interactions between collapsing hunter-gatherers and expanding farmers of Anatolian ancestry.4-8 This transition is documented through extensive ancient genomic data from present-day Britain,9,10 Ireland,11,12 Iberia,13 Mediterranean islands,14,15 and Germany.8 It remains, however, largely overlooked in France, where most focus has been on the Middle Neolithic (n = 63),8,9,16 with the exception of one Late Neolithic genome sequenced at 0.05× coverage.16 This leaves the key transitional period covering ∼3,400-2,700 cal. years (calibrated years) BCE genetically unsampled and thus the exact time frame of hunter-gatherer persistence and arrival of steppe migrations unknown. To remediate this, we sequenced 24 ancient human genomes from France spanning ∼3,400-1,600 cal. years BCE. This reveals Late Neolithic populations that are genetically diverse and include individuals with dark skin, hair, and eyes. We detect heterogeneous hunter-gatherer ancestries within Late Neolithic communities, reaching up to ∼63.3% in some individuals, and variable genetic contributions of steppe herders in Bell Beaker populations. We provide an estimate as late as ∼3,800 years BCE for the admixture between Neolithic and Mesolithic populations and as early as ∼2,650 years BCE for the arrival of steppe-related ancestry. The genomic heterogeneity characterized underlines the complex history of human interactions even at the local scale.


Asunto(s)
ADN Antiguo , Migración Humana , Europa (Continente) , Francia , Genoma Humano , Genómica , Historia Antigua , Humanos
4.
J Hum Genet ; 65(10): 875-887, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32483274

RESUMEN

New Guineans represent one of the oldest locally continuous populations outside Africa, harboring among the greatest linguistic and genetic diversity on the planet. Archeological and genetic evidence suggest that their ancestors reached Sahul (present day New Guinea and Australia) by at least 55,000 years ago (kya). However, little is known about this early settlement phase or subsequent dispersal and population structuring over the subsequent period of time. Here we report 379 complete Papuan mitochondrial genomes from across Papua New Guinea, which allow us to reconstruct the phylogenetic and phylogeographic history of northern Sahul. Our results support the arrival of two groups of settlers in Sahul within the same broad time window (50-65 kya), each carrying a different set of maternal lineages and settling Northern and Southern Sahul separately. Strong geographic structure in northern Sahul remains visible today, indicating limited dispersal over time despite major climatic, cultural, and historical changes. However, following a period of isolation lasting nearly 20 ky after initial settlement, environmental changes postdating the Last Glacial Maximum stimulated diversification of mtDNA lineages and greater interactions within and beyond Northern Sahul, to Southern Sahul, Wallacea and beyond. Later, in the Holocene, populations from New Guinea, in contrast to those of Australia, participated in early interactions with incoming Asian populations from Island Southeast Asia and continuing into Oceania.


Asunto(s)
Etnicidad/genética , Migración Humana/historia , Adulto , Asia Sudoriental , Australia , Etnicidad/historia , Femenino , Genoma Mitocondrial , Fenómenos Geológicos , Haplotipos/genética , Historia Antigua , Humanos , Funciones de Verosimilitud , Masculino , Nueva Guinea , Papúa Nueva Guinea , Filogenia , Filogeografía , Tasmania
5.
Nat Biomed Eng ; 3(12): 985-997, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31636412

RESUMEN

Expanded autologous skin keratinocytes are currently used in cutaneous cell therapy, and embryonic-stem-cell-derived keratinocytes could become a complementary alternative. Regardless of keratinocyte provenance, for efficient therapy it is necessary to preserve immature keratinocyte precursors during cell expansion and graft processing. Here, we show that stable and transient downregulation of the transcription factor Krüppel-like factor 4 (KLF4) in keratinocyte precursors from adult skin, using anti-KLF4 RNA interference or kenpaullone, promotes keratinocyte immaturity and keratinocyte self-renewal in vitro, and enhances the capacity for epidermal regeneration in mice. Both stable and transient KLF4 downregulation had no impact on the genomic integrity of adult keratinocytes. Moreover, transient KLF4 downregulation in human-embryonic-stem-cell-derived keratinocytes increased the efficiency of skin-orientated differentiation and of keratinocyte immaturity, and was associated with improved generation of epidermis. As a regulator of the cell fate of keratinocyte precursors, KLF4 could be used for promoting the ex vivo expansion and maintenance of functional immature keratinocyte precursors.


Asunto(s)
Queratinocitos/inmunología , Queratinocitos/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Piel/metabolismo , Adulto , Animales , Diferenciación Celular , Regulación hacia Abajo , Células Epidérmicas/metabolismo , Células Epidérmicas/patología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Xenoinjertos , Humanos , Queratinocitos/patología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Desnudos , Piel/patología , Células Madre
6.
Dis Model Mech ; 10(4): 487-497, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28188264

RESUMEN

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations.


Asunto(s)
Evaluación Preclínica de Medicamentos , Músculo Esquelético/patología , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/patología , Adulto , Empalme Alternativo/efectos de los fármacos , Empalme Alternativo/genética , Línea Celular Transformada , Niño , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Masculino , Persona de Mediana Edad , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteína MioD/metabolismo , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , ARN/metabolismo
7.
J Biol Chem ; 287(48): 40767-78, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23019325

RESUMEN

BACKGROUND: Strategies on the basis of doxycycline-inducible lentiviruses in mouse cells allowed the examination of mechanisms governing somatic cell reprogramming. RESULTS: Using a doxycycline-inducible human reprogramming system, we identified unreported miRs enhancing reprogramming efficiency. CONCLUSION: We generated a drug-inducible human reprogramming reporter system as an invaluable tool for genetic or chemical screenings. SIGNIFICANCE: These cellular systems provide a tool to enable the advancement of reprogramming technologies in human cells. Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years, reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene, driven by the reactivation of endogenous stem cell specific promoters, was used as a reprogramming reporter signal. However, similar reporter systems in human cells have not been generated. Here, we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system, we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency.


Asunto(s)
Diferenciación Celular , Técnicas Citológicas/métodos , Doxiciclina/farmacología , Genes Reporteros/efectos de los fármacos , Células Madre/citología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Madre/metabolismo
8.
J Pediatr Surg ; 44(9): 1831-4, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19735835

RESUMEN

Alimentary tract duplications are rare congenital malformations that occur most commonly in the jejunoileal part of the gastrointestinal tract. Management of this pathologic condition is usually drawn up. We report a case of descending colonic communicating duplication in which clinical presentation and anatomopathologic results were unexpected. A slightly echogenic abdominal mass reaching 72 x 36 mm in the left flank was diagnosed in a female fetus during the third trimester ultrasound examination. At birth, volume of the mass rapidly evolved, and despite no intestinal obstruction was observed by compression of the adjacent gastrointestinal tract, abdomen was distended. Abdominal plain film showed a large air collection, and the barium enema demonstrated a slight leak of contrast in the aerated mass, suggesting a communication with the sigmoid colon. No other abnormalities were seen. The patient underwent surgery in emergency. The mass was then totally excised through an antimesenteric resection of the tubular tract joining cystic mass and sigmoid colon. A lateral suture of the colon was subsequently performed. The wall of the duplication is usually composed of a smooth muscle layer covered by an epithelium, mostly of intestinal type. Herein, we describe a descending colonic duplication completely lined with nonkeratinizing squamous epithelium. Therefore, the association of a colonic mucosa (of endodermic origin) and a squamous epithelium (derived from the ectoderm) in our case is an interesting finding and is not explained by the various theories. Furthermore, the clinical characteristics, diagnosis, and treatment of intestinal duplications are discussed with regard to literature.


Asunto(s)
Colon Sigmoide/anomalías , Colon Sigmoide/cirugía , Sulfato de Bario , Colon Sigmoide/diagnóstico por imagen , Colon Sigmoide/patología , Medios de Contraste , Diagnóstico Diferencial , Enema , Femenino , Humanos , Recién Nacido , Radiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA