Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 95(1): 112-125, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29681057

RESUMEN

The medicinal plant Camptotheca acuminata accumulates camptothecin, 10-hydroxycamptothecin, and 10-methoxycamptothecin as its major bioactive monoterpene indole alkaloids. Here, we describe identification and functional characterization of 10-hydroxycamptothecin O-methyltransferase (Ca10OMT), a member of the Diverse subclade of class II OMTs. Ca10OMT is highly active toward both its alkaloid substrate and a wide range of flavonoids in vitro and in this way contrasts with other alkaloid OMTs in the subclade that only utilize alkaloid substrates. Ca10OMT shows a strong preference for the A-ring 7-OH of flavonoids, which is structurally equivalent to the 10-OH of 10-hydroxycamptothecin. The substrates of other alkaloid OMTs in the subclade bear little similarity to flavonoids, but the 3-D positioning of the 7-OH, A- and C-rings of flavonoids is nearly identical to the 10-OH, A- and B-rings of 10-hydroxycamptothecin. This structural similarity likely explains the retention of flavonoid OMT activity by Ca10OMT and also why kaempferol and quercetin aglycones are potent inhibitors of its 10-hydroxycamptothecin activity. The catalytic promiscuity and strong inhibition of Ca10OMT by flavonoid aglycones in vitro prompted us to investigate the potential physiological roles of the enzyme in vivo. Based on its regioselectivity, kinetic parameters and absence of 7-OMT flavonoids in vivo, we conclude that the major and likely only substrate of Ca10OMTin vivo is 10-hydroxycamptothecin. This is likely accomplished by Ca10OMT being kept spatially separated at the tissue levels from potentially inhibitory flavonoid aglycones, and flavonoid aglycones being rapidly glycosylated to non-inhibitory flavonoid glycosides.


Asunto(s)
Camptotheca/enzimología , Camptotecina/análogos & derivados , Flavonoides/metabolismo , Metiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Alcaloides/metabolismo , Camptotheca/genética , Camptotheca/metabolismo , Camptotecina/metabolismo , Cromatografía Líquida de Alta Presión , Redes y Vías Metabólicas , Metiltransferasas/genética , Filogenia , Proteínas de Plantas/genética , Transcriptoma
2.
J Biol Chem ; 288(5): 3163-73, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23243312

RESUMEN

Valerian is an herbal preparation from the roots of Valeriana officinalis used as an anxiolytic and sedative and in the treatment of insomnia. The biological activities of valerian are attributed to valerenic acid and its putative biosynthetic precursor valerenadiene, sesquiterpenes, found in V. officinalis roots. These sesquiterpenes retain an isobutenyl side chain whose origin has been long recognized as enigmatic because a chemical rationalization for their biosynthesis has not been obvious. Using recently developed metabolomic and transcriptomic resources, we identified seven V. officinalis terpene synthase genes (VoTPSs), two that were functionally characterized as monoterpene synthases and three that preferred farnesyl diphosphate, the substrate for sesquiterpene synthases. The reaction products for two of the sesquiterpene synthases exhibiting root-specific expression were characterized by a combination of GC-MS and NMR in comparison to the terpenes accumulating in planta. VoTPS7 encodes for a synthase that biosynthesizes predominately germacrene C, whereas VoTPS1 catalyzes the conversion of farnesyl diphosphate to valerena-1,10-diene. Using a yeast expression system, specific labeled [(13)C]acetate, and NMR, we investigated the catalytic mechanism for VoTPS1 and provide evidence for the involvement of a caryophyllenyl carbocation, a cyclobutyl intermediate, in the biosynthesis of valerena-1,10-diene. We suggest a similar mechanism for the biosynthesis of several other biologically related isobutenyl-containing sesquiterpenes.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Biocatálisis , Vías Biosintéticas , Sesquiterpenos/metabolismo , Valeriana/enzimología , Vías Biosintéticas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hidrocarburos/metabolismo , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sesquiterpenos/química , Especificidad por Sustrato , Valeriana/genética
3.
Methods Enzymol ; 517: 139-59, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23084937

RESUMEN

Development of next-generation sequencing, coupled with the advancement of computational methods, has allowed researchers to access the transcriptomes of recalcitrant genomes such as those of medicinal plant species. Through the sequencing of even a few cDNA libraries, a broad representation of the transcriptome of any medicinal plant species can be obtained, providing a robust resource for gene discovery and downstream biochemical pathway discovery. When coupled to estimation of expression abundances in specific tissues from a developmental series, biotic stress, abiotic stress, or elicitor challenge, informative coexpression and differential expression estimates on a whole transcriptome level can be obtained to identify candidates for function discovery.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genoma de Planta , Genómica/métodos , Plantas Medicinales/química , Plantas Medicinales/genética , Secuencia de Bases , Mapeo Cromosómico/métodos , Biología Computacional/métodos , Bases de Datos Genéticas , Biblioteca de Genes , Genotipo , ARN de Planta/genética , ARN de Planta/aislamiento & purificación , Sensibilidad y Especificidad , Transcriptoma
4.
Plant Cell ; 24(2): 395-414, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22374394

RESUMEN

The term vitamin describes a small group of organic compounds that are absolutely required in the human diet. Although for the most part, dependency criteria are met in developed countries through balanced diets, this is not the case for the five billion people in developing countries who depend predominantly on a single staple crop for survival. Thus, providing a more balanced vitamin intake from high-quality food remains one of the grandest challenges for global human nutrition in the coming decade(s). Here, we describe the known importance of vitamins in human health and current knowledge on their metabolism in plants. Deficits in developing countries are a combined consequence of a paucity of specific vitamins in major food staple crops, losses during crop processing, and/or overreliance on a single species as a primary food source. We discuss the role that plant science can play in addressing this problem and review successful engineering of vitamin pathways. We conclude that while considerable advances have been made in understanding vitamin metabolic pathways in plants, more cross-disciplinary approaches must be adopted to provide adequate levels of all vitamins in the major staple crops to eradicate vitamin deficiencies from the global population.


Asunto(s)
Avitaminosis/prevención & control , Productos Agrícolas/metabolismo , Plantas/metabolismo , Vitaminas/biosíntesis , Cruzamiento , Mapeo Cromosómico , Países en Desarrollo , Alimentos Fortificados , Variación Genética , Humanos , Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
5.
PLoS One ; 7(12): e52506, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300689

RESUMEN

The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for understanding plant specialized metabolism, and promotes realization of innovative production systems for plant-derived pharmaceuticals.


Asunto(s)
Perfilación de la Expresión Génica , Magnoliopsida/genética , Magnoliopsida/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Secuencia Conservada , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Ácido Nucleico
6.
Plant J ; 64(2): 267-79, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21070407

RESUMEN

Cellular folates function as co-enzymes in one-carbon metabolism and are predominantly decorated with a polyglutamate tail that enhances co-enzyme affinity, subcellular compartmentation and stability. Polyglutamylation is catalysed by folylpolyglutamate synthetases (FPGSs) that are specified by three genes in Arabidopsis, FPGS1, 2 and 3, which reportedly encode plastidic, mitochondrial and cytosolic isoforms, respectively. A mutational approach was used to probe the functional importance of folate polyglutamylation in one-carbon metabolism and development. Biochemical analysis of single FPGS loss-of-function mutants established that folate polyglutamylation is essential for organellar and whole-plant folate homeostasis. However, polyglutamylated folates were still detectable, albeit at lower levels, in organelles isolated from the corresponding isozyme knockout lines, e.g. in plastids and mitochondria of the fpgs1 (plastidial) and fpgs2 (mitochondrial) mutants. This result is surprising given the purported single-compartment targeting of each FPGS isozyme. These results indicate redundancy in compartmentalised FPGS activity, which in turn explains the lack of anticipated phenotypic defects for the single FPGS mutants. In agreement with this hypothesis, fpgs1 fpgs2 double mutants were embryo-lethal, fpgs2 fpgs3 mutants exhibited seedling lethality, and fpgs1 fpgs3 mutants were dwarfed with reduced fertility. These phenotypic, metabolic and genetic observations are consistent with targeting of one or more FPGS isozymes to multiple organelles. These data confirm the importance of polyglutamylation in folate compartmentation, folate homeostasis and folate-dependent metabolic processes, including photorespiration, methionine and pantothenate biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ácido Fólico/metabolismo , Péptido Sintasas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Homeostasis , Isoenzimas/genética , Isoenzimas/metabolismo , Familia de Multigenes , Ácido Pantoténico , Pectinas/metabolismo , Péptido Sintasas/genética , Fenotipo , Semillas/enzimología , Sacarosa
8.
Planta ; 226(4): 1067-73, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17569077

RESUMEN

Plastoquinone plays critical roles in photosynthesis, chlororespiration and carotenoid biosynthesis. The previously isolated pds2 mutant from Arabidopsis was deficient in tocopherol and plastoquinone accumulation, and the biochemical phenotype of this mutant could not be reversed by externally applied homogentisate, suggesting a later step in tocopherol and/or plastoquinone biosynthesis had been disrupted. Recently, the protein encoded by At3g11950 (AtHST) was shown to condense homogentisate with solanesyl diphosphate (SDP), the substrate for plastoquinone synthesis, but not phytyl diphosphate (PDP), the substrate for tocopherol biosynthesis. We have sequenced the AtHST allele in the pds2 mutant background and identified an in-frame 6 bp (2 aa) deletion in the gene. The pds2 mutation could be functionally complemented by constitutive expression of AtHST, demonstrating that the molecular basis for the pds2 mutation is this 6 bp-lesion in the AtHST gene. Confocal microscopy of EGFP tagged AtHST suggested that AtHST is localized to the chloroplast envelope, supporting the hypothesis that plastoquinone synthesis occurs in the plastid.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Cloroplastos/metabolismo , Plastoquinona/metabolismo , Eliminación de Secuencia , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Complementario , Prueba de Complementación Genética , Datos de Secuencia Molecular
10.
Plant Physiol ; 138(3): 1422-35, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15965015

RESUMEN

Tocopherols (vitamin E) are lipid-soluble antioxidants synthesized only by photosynthetic eukaryotes and some cyanobacteria, and have been assumed to play important roles in protecting photosynthetic membranes from oxidative stress. To test this hypothesis, tocopherol-deficient mutants of Synechocystis sp. strain PCC 6803 (slr1736 and slr1737 mutants) were challenged with a series of reactive oxygen species-generating and lipid peroxidation-inducing chemicals in combination with high-light (HL) intensity stress. The tocopherol-deficient mutants and wild type were indistinguishable in their growth responses to HL in the presence and absence of superoxide and singlet oxygen-generating chemicals. However, the mutants showed enhanced sensitivity to linoleic or linolenic acid treatments in combination with HL, consistent with tocopherols playing a crucial role in protecting Synechocystis sp. strain PCC 6803 cells from lipid peroxidation. The tocopherol-deficient mutants were also more susceptible to HL treatment in the presence of sublethal levels of norflurazon, an inhibitor of carotenoid synthesis, suggesting carotenoids and tocopherols functionally interact or have complementary or overlapping roles in protecting Synechocystis sp. strain PCC 6803 from lipid peroxidation and HL stress.


Asunto(s)
Peroxidación de Lípido , Synechocystis/fisiología , Tocoferoles/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Cinética , Luz , Peróxidos Lipídicos/metabolismo , Mutación , Especies Reactivas de Oxígeno/metabolismo , Synechocystis/genética , Synechocystis/crecimiento & desarrollo , Deficiencia de Vitamina E/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA