Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Ethnopharmacol ; 319(Pt 3): 117320, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37838297

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: A combination of 6 different Chinese herbs known as Erchen decoction (ECD) has been traditionally used to treat digestive tract diseases and found to have a protective effect against nonalcoholic fatty liver disease (NAFLD). Despite its efficacy in treating NAFLD, the precise molecular mechanism by which Erchen Decoction regulated iron ion metabolism to prevent disease progression remained poorly understood. AIM OF STUDY: Our study attempted to confirm the specific mechanism of ECD in reducing lipid and iron in NAFLD from the perspective of regulating the expression of Caveolin-1 (Cav-1). STUDY DESIGN: In our study, the protective effect of ECD was investigated in Palmitic Acid + Oleic Acid-induced hepatocyte NAFLD model and high-fat diet-induced mice NAFLD model. To investigate the impact of Erchen Decoction (ECD) on lipid metabolism and iron metabolism via mediating Cav-1 in vitro, Cav-1 knockdown cell lines were established using lentivirus-mediated transfection techniques. MATERIALS AND METHODS: We constructed NAFLD model by feeding with high-fat diet for 12 weeks in vivo and Palmitic Acid + Oleic Acid treatment for 24 h in vitro. The regulation of Lipid and iron metabolism results by ECD were detected by serological diagnosis, immunofluorescent and immunohistochemical staining, and western blotting. The binding ability of 6 small molecules of ECD to Cav-1 was analyzed by molecular docking. RESULTS: We demonstrated that ECD alleviated the progression of NAFLD by inhibiting lipid accumulation, nitrogen oxygen stress, and iron accumulation in vivo and in vitro experiments. Furthermore, ECD inhibited lipid and iron accumulation in liver by up-regulating the expression of Cav-1, which indicated that Cav-1 was an important target for ECD to exert its curative effect. CONCLUSIONS: In summary, our study demonstrated that ECD alleviated the accumulation of lipid and iron in NAFLD through promoting the expression of Cav-1, and ECD might serve as a novel Cav-1 agonist to treat NAFLD.


Asunto(s)
Sobrecarga de Hierro , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Palmítico/toxicidad , Caveolina 1/genética , Ácido Oléico/farmacología , Simulación del Acoplamiento Molecular , Hígado , Metabolismo de los Lípidos , Sobrecarga de Hierro/tratamiento farmacológico , Hierro/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
2.
Medicine (Baltimore) ; 102(50): e35312, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38115279

RESUMEN

Based on network pharmacology and molecular docking, this study seeks to investigate the mechanism of Taohong Siwu decoction (THSWD) in the treatment of avascular necrosis of the femoral head (AVNFH). The Traditional Chinese Medicine Systems Pharmacology database was used in this investigation to obtain the active ingredients and related targets for each pharmaceutical constituent in THSWD. To find disease-related targets, the terms "avascular necrosis of the femoral head," "necrosis of the femoral head," "steroid-induced necrosis of the femoral head," "osteonecrosis," and "avascular necrosis of the bone" were searched in the databases DisGeNET, GeneCards, Comparative Toxicogenomics Database, and MalaCards. Following the identification of the overlap targets of THSWD and AVNFH, enrichment analysis using gene ontology, Kyoto Encyclopedia of Genes and Genomes, Reactome, and WikiPathways was conducted. The "THSWD-drug-active compound-intersection gene-hub gene-AVNFH" network and protein-protein interaction network were built using Cytoscape 3.9.1 and string, and CytoHubba was used to screen hub genes. The binding activities of hub gene targets and key components were confirmed by molecular docking. 152 prospective therapeutic gene targets were found in the bioinformatics study of ONFH treated with THSWD, including 38 major gene targets and 10 hub gene targets. The enrichment analysis of 38 key therapeutic targets showed that the biological process of gene ontology analysis mainly involved cytokine-mediated signaling pathway, angiogenesis, cellular response to reactive oxygen species, death-inducing signaling complex. The Kyoto Encyclopedia of Genes and Genomes signaling pathway mainly involves TNF signaling pathway, IL-17 signaling pathway, and the Recactome pathway mainly involves Signaling by Interleukins, Apoptosis, and Intrinsic Pathway for Apoptosis. WikiPathways signaling pathway mainly involves TNF-related weak inducer of apoptosis signaling pathway, IL-18 signaling pathway. According to the findings of enrichment analysis, THSWD cured AVNFH by regulating angiogenesis, cellular hypoxia, inflammation, senescence, apoptosis, cytokines, and cellular proliferation through the aforementioned targets and signaling pathways. The primary component of THSWD exhibits a strong binding force with the key protein of AVNFH. This study sheds new light on the biological mechanism of THSWD in treating AVNFH by revealing the multi-component, multi-target, and multi-pathway features and molecular docking mechanism of THSWD.


Asunto(s)
Medicamentos Herbarios Chinos , Necrosis de la Cabeza Femoral , Humanos , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China
3.
Medicine (Baltimore) ; 102(31): e34464, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37543793

RESUMEN

Based on network pharmacology methods, we explored the mechanism of the classic Chinese medicine formula Coix seed decoction (CSD) in treating knee osteoarthritis (KOA). We searched each single drug in the CSD in the traditional Chinese medicine systematic pharmacology database in turn to obtain information on the active ingredients and target proteins of the CSD, and obtain the name of the genes corresponding to the target proteins through the UniProt database. We collected KOA-related genes from DisGeNET, GeneCards, comparative toxicogenomics database, and MalaCards database. The Venny online tool identified potential therapeutic targets by intersecting CSD and KOA target genes, while gene ontology and Kyoto encyclopedia of genes and genomes analysis was performed using the Oebiotech Cloud Platform. A protein-protein interaction network was established using the String database; a "CSD-active ingredient-target gene-KOA" network plot was constructed using Cytoscape 3.9.1 software and screened for key targets and hub targets. Finally, molecular docking was performed for hub genes with high Degree values. A total of 227 effective target genes for CSD and 8816 KOA-related target genes were obtained, as well as 191 cross-target genes for CSD and KOA. We screened 37 key gene targets and identified the top 10 hub target genes in descending order of Degree value using protein-protein interaction and Cytoscape 3.9.1 software (TNF, IL-6, MMP-9, IL-1ß, AKT-1, VEGFα, STAT-3, PTGS-2, IL-4, TP53). Gene ontology analysis showed that the biological process of CSD treatment of KOA mainly involves cytokine-mediated signaling pathway, negative regulation of apoptotic process, cellular response to hypoxia, cellular response to cadmium ion, response to estradiol, and extrinsic apoptotic signaling pathway in absence of ligand. Kyoto encyclopedia of genes and genomes analysis revealed major signaling pathways including Cellular senescence, TNF signaling pathway, and PI3K-Akt signaling pathway. The molecular docking results show that the core components bind well to the core targets. In conclusion, CSD may exert therapeutic effects on KOA by inhibiting pathological processes such as inflammatory response, apoptosis, cellular senescence, and oxidative stress.


Asunto(s)
Coix , Medicamentos Herbarios Chinos , Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/genética , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China
4.
J Ethnopharmacol ; 313: 116559, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37116730

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Exocarpium Citri grandis (ECG, Huajuhong in Chinese), the epicarp of C. grandis 'Tomentosa', has been used for hundreds of years as an anti-inflammatory, expectorant, hypoglycemic, and lipid-lowering medication in China. Nevertheless, there have been few papers that have explored the mechanism behind ECG's hypolipidemic characteristics from the perspective of treating nonalcoholic fatty liver disease (NAFLD). AIM OF STUDY: The purpose of our study was to confirm the therapeutic and preventative effects of ECG in NAFLD by regulating lipid accumulation and iron metabolism, and to explore the specific mechanism of ECG in enhancing hepatic iron transport and excretion capabilities. STUDY DESIGN: We constructed a NAFLD model by feeding male C57BL/6 J mice with a high-fat diet for 12 weeks. Mice were gavaged with ECG beginning in the seventh week of modeling, and three dosage gradients were established: low dose group (2.5 g/kg/d), medium dose group (5 g/kg/d) y, and high dose group (10 g/kg/d) until the end of model construction in week 12. MATERIALS AND METHODS: We used network pharmacology to analyze the relationship between ECG and NAFLD. In addition, we constructed a nonalcoholic fatty liver disease model by feeding male C57BL/6 J mice a high-fat diet for 12 weeks. Finally, lipid accumulation, iron accumulation, inflammation and oxidative stress were evaluated by serological index detection, histological detection, immunofluorescent and immunohistochemical staining, and western blotting. RESULTS: Network pharmacology confirmed the treatment effect of ECG in NAFLD. Three active components of ECG, including Naringenin, Naringin and Neohesperidin, were detected by UHPLC-HRMS analysis. The results of serum TC, TG, LDL concentration, HE staining, Oil red staining and Nile red staining demonstrated that ECG could improve lipid metabolism disorders. The results of serum iron concentration, liver tissue iron concentration, iron metabolism-related proteins Ferritin light chain, Ferroportin1, Transferrin receptor, and Transferrin demonstrated that ECG improved the iron transport and storage capacities of hepatic cells. CONCLUSIONS: Our results demonstrated that ECG relieved liver injury by inhibiting lipid accumulation and iron accumulation in NAFLD.


Asunto(s)
Trastornos del Metabolismo del Hierro , Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones Endogámicos C57BL , Hígado , Trastornos del Metabolismo del Hierro/metabolismo , Trastornos del Metabolismo del Hierro/patología , Hierro/metabolismo , Lípidos/farmacología , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos
5.
J Food Biochem ; 46(12): e14496, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36350934

RESUMEN

Dendrobium huoshanense C. Z. Tang et S. J. Cheng polysaccharide (DHP) is the essential active ingredient of D.huoshanense and has high medicinal value. A high dose of D-galactose (D-gal) is commonly utilized in the aging model establishment. In this study, we explored whether DHP shields PC12 cells and aging mice from D-gal caused damage and the possible mechanism. In vitro experiments, D-gal induced PC12 cells were used to investigate, and then DHP was used for treatment. In vivo experiments, 72 SPF ICR male mice were randomly divided into six groups (control: normal saline; model: D-gal (400 mg/kg); VE group: VE (50 µg/ml); DHP groups: D-gal + DHP (15.6 mg/ml; 31.2 mg/ml; 62.4 mg/ml)). The results showed that DHP could enhance the viability of D-gal injured PC12 cells and prevent cell apoptosis. DHP effectively promoted the transition from phase G0/G1 to phase S and inhibited cell cycle arrest. DHP has a potential neuroprotective effect on D-gal caused cognitive and memory disorders in mice. On the one hand, DHP protects the antioxidant enzymes SOD, GSH-PX, and CAT from excessive ROS buildup. On the other hand, DHP was demonstrated to block the expression of the P53/P21 signaling pathway-related proteins P53, P21, and P16. These results imply that DHP could be a potential neuroprotective agent against aging. PRACTICAL APPLICATIONS: Cognitive and memory decline caused by aging problems has become a problem in recent years. There are many theories about aging, among which oxidative stress is considered to be one of the important pathophysiological parts of various diseases in the aging process. In this study, DHP could not only improve the damage of D-Gal to PC12 cells, but also improve the cognitive and memory impairment caused by D-Gal in mice. In conclusion, this study verified the anti-aging effect of DHP from in vitro and in vivo experiments, and its mechanism may involve the P53/P21 pathway. Therefore, this study indicated that polysaccharides from Dendrobium huoshanense, a traditional Chinese medicine of homologous medicine and food, had potential and industrial value as potential anti-aging drugs.


Asunto(s)
Dendrobium , Galactosa , Ratas , Ratones , Masculino , Animales , Células PC12 , Galactosa/efectos adversos , Proteína p53 Supresora de Tumor , Ratones Endogámicos ICR , Envejecimiento , Polisacáridos/farmacología
6.
J Ethnopharmacol ; 296: 115457, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35753609

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Poria cocos polysaccharides (PCP) are abundant in Poria cocos (Schw.) Wolf (Poria). This is a common traditional Chinese medicine used to treat gastrointestinal and liver diseases. Poria cocos dispel dampness and enhance gastrointestinal functions, strongly affecting the treatment of non-alcoholic fatty liver disease. Still, the mechanism is not yet clear. AIM OF THE STUDY: The latest research found that protecting the integrity of the intestinal barrier can slow down the progression of non-alcoholic fatty liver disease (NAFLD). Hence, our research ought to explore the protective mechanism of PCP on the intestinal barrier under a high-fat diet and to clarify the relationship between intestinal barrier damage and steatohepatitis. MATERIALS AND METHODS: H&E staining was done to evaluate pathological damage, whereas Nile red and oil red O staining was conducted to evaluate hepatic fat infiltration. Immunofluorescence staining and immunohistochemical staining were used to detect protein expression and locations. Bone marrow-derived macrophages were isolated for in vitro experiments. ONOO- and ROS fluorescent probes and MDA, SOD, and GSH kits assessed the levels of nitrogen and oxidative stress. LPS levels were detected with a Limulus Amebocyte Lysate assay. The Western blot analysis and reverse transcription-quantitative PCR detected the expression of related proteins and genes. The Elisa kit detected the level of the inflammatory factors in the cell supernatant. For the vivo NAFLD experiments, in briefly, mice were randomly chosen to receive either a High-fat diet or control diet for 12 weeks. Drug treatments started after 4 weeks of feeding. Zebrafish larvae were raised separately in fish water or 7 mM thioacetamide as the control or model group for approximately 72 h. In the therapy groups, different concentrations of PCP were added to the culture environment at the same time. RESULTS: In zebrafish, we determined the safe concentration of PCP and found that PCP could effectively reduce the pathological damage in the liver and intestines induced by the NAFLD model. In mice, PCP could slow down weight gain, hyperlipidemia, and liver steatosis caused by a high-fat diet. More importantly, PCP could reduce the destruction of the gut-vascular barrier and the translocation of endotoxins caused by a high-fat diet. Further, we found that PCP could inhibit intestinal pyroptosis by regulating PARP-1. Pyroptosis inhibitors, such as MCC950, could effectively protect the intestinal and liver damage induced by a high-fat diet. We also found that pyroptosis mainly occurred in intestinal macrophages. PCP could effectively improve the survival rate of bone marrow-derived macrophages in a high-fat environment and inhibit pyroptosis. CONCLUSIONS: These results indicated that PCP inhibited the pyroptosis of small intestinal macrophages to protect the intestinal barrier integrity under a high-fat diet. This resulted in decreased endotoxin translocation and progression of steatohepatitis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Wolfiporia , Animales , Dieta Alta en Grasa , Hígado , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Piroptosis , Pez Cebra
7.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2705-2711, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35718490

RESUMEN

This study was designed to explore the effect and mechanism of Gegen Qinlian Decoction(GQD) on cardiac function of diabetic mice with damp-heat syndrome. The db/db diabetic mice were exposed to the damp-heat environment test chamber for inducing the damp-heat syndrome. Forty-eight six-week-old db/db mice were randomly divided into six groups, namely the db/db diabetic model group, db/db diabetic mouse with damp-heat syndrome(db/db-dh) group, db/db diabetic mouse with damp-heat syndrome treated with low-dose GQD(db/db-dh+GQD-L) group, db/db-dh+GQD-M(medium-dose) group, db/db-dh+GQD-H(high-dose) group, and db/db-dh+lipro(liprostatin-1, the inhibitor of ferroptosis) group, with eight six-week-old db/m mice classified into the control group. The results showed that mice presented with the damp-heat syndrome after exposure to the "high-fat diet" and "damp-heat environment", manifested as the elevated fasting blood glucose, reduced food intake, low urine output, diarrhea, listlessness, loose and coarse hair, and dark yellow and lusterless fur. However, the intragastric administration of the high-dose GQD for 10 weeks ameliorated the above-mentioned symptoms, inhibited myocardial hypertrophy and fibrosis, and improved the cardiac diastolic function of db/db-dh mice. qPCR suggested that GQD regulated the expression of ferroptosis-related genes, weakened the lipid peroxidation in the myocardium, and up-regulated glutathione peroxidase 4(GPX4) expression in comparison with those in the db/db-dh group. At the same time, the ferroptosis inhibitor liprostatin-1 significantly improved the cardiac function and reversed the cardiac remodeling of db/db-dh mice. It can be concluded that the damp-heat syndrome may aggravate myocardial ferroptosis and accelerate cardiac remodeling of db/db mice, thus leading to diastolic dysfunction. GQD is able to improve cardiac remodeling and diastolic function in diabetic mice with damp-heat syndrome, which may be related to its inhibition of myocardial ferroptosis.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Medicamentos Herbarios Chinos , Calor , Hiperglucemia/tratamiento farmacológico , Ratones , Remodelación Ventricular
8.
Aging (Albany NY) ; 13(4): 5875-5891, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33591947

RESUMEN

Indoleamine 2, 3-dioxygenase 1 (IDO1) has been implicated in the pathogenesis of depression, though its molecular mechanism is still poorly understood. We investigated the molecular mechanism of IDO1 in depression by using the chronic unpredictable mild stress (CUMS) model in Ido1-/- mice and WT mice. The brain blood oxygen level dependent (BOLD) signals in mice were collected by functional magnetic resonance imaging (fMRI) technology. IDO1 inhibitor INCB024360 was intervened in dorsal raphe nucleus (DRN) through stereotactic injection. We found an elevation of serum IDO1 activity and decreased 5-HT in CUMS mice, and the serum IDO1 activity was negatively correlated with 5-HT level. Consistently, IDO1 was increased in hippocampus and DRN regions, accompanied by a reduction of hippocampal BDNF levels in mice with CUMS. Specifically, pharmacological inhibition of IDO1 activity in the DRN alleviated depressive-like behaviour with improving hippocampal BDNF expression and neurogenesis in CUMS mice. Furthermore, ablation of Ido1 exerted stress resistance and decreased the sensitivity of depression in CUMS mice with the stable BOLD signals, BDNF expression and neurogenesis in hippocampus. Thus, IDO1 hyperactivity played crucial roles in modulating 5-HT metabolism and BDNF function thereby impacting outcomes of hippocampal neurogenesis and BOLD signals in depressive disorder.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/metabolismo , Hipocampo/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Triptófano/metabolismo , Animales , Depresión/diagnóstico por imagen , Depresión/tratamiento farmacológico , Depresión/etiología , Núcleo Dorsal del Rafe/metabolismo , Evaluación Preclínica de Medicamentos , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos , Oximas/farmacología , Oximas/uso terapéutico , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Triptófano Hidroxilasa/metabolismo
9.
Biomed Pharmacother ; 126: 110092, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32203890

RESUMEN

Actinidia chinensis Planch (ACP) was the kiwifruit plant Chinese kiwifruit Actinidia chinensis Planch Root, which had been approved to be an anti-tumor drug widespread in clinical. However, the specific mechanism of ACP in resistance to gastric cancer remained unclear. Therefore, our study was dedicated to investigate the anti-proliferation and anti-migration effects of ACP on gastric cancer cells and its molecular mechanisms. Firstly, we utilized HPLC-MS to analyze the composition of ACP decoction, the results showed that ACP contained two main anti-tumor components, Ursolic acid and Oleanolic acid. The proliferation and migration ability of HGC-27 were examined by CCK-8 and cell scratch tests respectively. In addition, we also investigated HGC-27 cells apoptosis, mesenchymal phenotype and ferroptosis after ACP rat drug-containing serum (ACPs) treatment. EGFP-expressing lentiviral vectors were utilized to construct HGC-27 cells which containing green fluorescence. Then we take advantages of containing green fluorescence cells to establish a zebrafish xenograft model in vivo. The CCK-8 and cell scratch experiments verified that ACPs significantly inhibited proliferation and migration of HGC-27 in vitro. ACPs increased cells apoptosis rate, while were rescued by apoptosis inhibitor Z-VAD-FMK. Furthermore, ACPs downregulated the expression levels of Vimentin protein and Snail protein markedly. Intriguingly, ACPs increased the accumulation of ROS via inhibited the glutathione peroxidase 4 (GPx4) and xCT (SLC7A11) proteins, while were inhibited by Ferrostatin-1 (Fer-1) significantly. Furthermore, the zebrafish xenograft study further confirmed that administration of ACP suppressed the xenograft growth and metastasis of transplanted HGC-27 cells in vivo. In conclusion, ACP was a promising antineoplastic agent for the treatment of gastric cancer by regulating apoptosis, ferroptosis and mesenchymal phenotype.


Asunto(s)
Actinidia/química , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Biomarcadores , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Humanos , Espectrometría de Masas , Ratones , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Ratas , Especies Reactivas de Oxígeno
11.
Front Pharmacol ; 9: 1098, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30323763

RESUMEN

As the traditional Chinese herbal formula, Xiaoyaosan and its modified formula have been described in many previous studies with definite anti-depressive effects, but its underlying mechanism remains mystery. Previous work in our lab has demonstrated that depression induced by chronic stress could generate brain blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals disorder, accompanied by the impairment of hippocampal neuronal plasticity, decrease of brain-derived neurotrophic factor, and reduction of the number and complexity of adult neurons in the dentate gyrus. We hypothesized that herbal formula based on Xiaoyaosan could exert anti-depressive effects through restoring these neurobiological dysfunctions and rectifying BOLD-fMRI signals. To test this hypothesis, we examined the effect of modified Xiaoyaosan (MXYS) on depressive-like behaviors, as well as hippocampal neurogenesis and BOLD signals in a mice model of chronic unpredictable mild stress (CUMS)-induced depression. MXYS exerted anti-depressant effects on CUMS-induced depression that were similar to the effects of classical antidepressants drug (fluoxetine hydrochloride), with a significant alleviation of depressive-like behaviors, an improvement of hippocampal neurogenesis, and a reversal of activation of BOLD in the limbic system, particularly in the hippocampus. These results suggested that MXYS attenuated CUMS-induced depressive behaviors by rectifying the BOLD signals in the mice hippocampus. These novel results demonstrated that MXYS had anti-depressive effects accompanied by improving BOLD signals and hippocampal neurogenesis, which suggested that BOLD-fMRI signals in brain regions could be a key component for the evaluation of novel antidepressant drugs.

12.
J Pharmacol Sci ; 138(1): 46-53, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30245287

RESUMEN

Hepatic steatosis is the early stage of alcoholic liver disease (ALD), may progress to steatohepatitis, fibrosis even cirrhosis. Polydatin, the primary active component of Polygonum cuspidatum Sieb. et Zucc, has been recognized to possess hepatoprotective and anti-inflammatory properties. To investigate whether polydatin alleviates ethanol induced liver injury and to elucidate the underlying molecular mechanisms, zebrafish larvae at 4 days post-fertilization (dpf) were exposed to 350 mmol/L of ethanol for 32 h, then treated with polydatin for 48 h. Oil red O, Nile Red and H&E staining were used to analyze the pathological changes in liver. The mRNA levels were measured by quantitative PCR and the antioxidant capacity was detected using H2O2-specific fluorescent probe. Here, polydatin strongly alleviated hepatic steatosis and decreased the expression levels of alcohol and lipid metabolism-related genes, including CYP2Y3, CYP3A65, HMGCRa, HMGCRb and FASN. Additionally, polydatin inhibited oxidative stress in the liver according to fluorescent probe. Moreover, significantly up-regulated expression of DNA damage-related genes (CHOP, GADD45αa) revealed that polydatin attenuated hepatic apoptosis in larvae. In conclusion, polydatin may improve the liver function of zebrafish with acute alcoholic liver injury through attenuating hepatic fat accumulation, ameliorating lipid and ethanol metabolism and reducing oxidative stress and DNA damage.


Asunto(s)
Antiinflamatorios , Antioxidantes , Glucósidos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Estilbenos/farmacología , Pez Cebra , Animales , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Familia 3 del Citocromo P450/genética , Familia 3 del Citocromo P450/metabolismo , Daño del ADN/genética , Fallopia japonica/química , Expresión Génica/efectos de los fármacos , Glucósidos/aislamiento & purificación , Glucósidos/uso terapéutico , Metabolismo de los Lípidos/genética , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo , Estilbenos/aislamiento & purificación , Estilbenos/uso terapéutico , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Bioorg Med Chem Lett ; 18(20): 5497-502, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18815030

RESUMEN

The identification of a novel pyrazolidine-3,5-dione based scaffold hit compound as Farnesoid X receptor (FXR) partial or full agonist has been accomplished by means of virtual screening techniques. A series of pyrazolidine-3,5-dione derivatives (1a-u and 7) was designed, synthesized, and evaluated by a cell-based luciferase transactivation assay for their agonistic activities against FXR. Most of them showed agonistic potencies and 10 of them (1a, 1b, 1d-f, 1j, 1n, 1t, 5b, and 7) exhibited lower EC(50) values than the reference drug CDCA. Molecular modeling studies for the representative compounds 1a, 1d, 1f, 1j, 1n, 1u, 5b, and 7 were also presented. The novel structural scaffold has provided a new direction for finding potent and selective FXR partial and full agonists (referred to as 'selective bile acid receptor modulators', SBARMs).


Asunto(s)
Proteínas de Unión al ADN/agonistas , Evaluación Preclínica de Medicamentos/métodos , Pirazoles/síntesis química , Receptores Citoplasmáticos y Nucleares/agonistas , Factores de Transcripción/agonistas , Ácidos y Sales Biliares/química , Química Farmacéutica/métodos , Proteínas de Unión al ADN/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Ligandos , Luciferasas/química , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Pirazoles/farmacología , Receptores Citoplasmáticos y Nucleares/química , Factores de Transcripción/química , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA