Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Chem Biol Drug Des ; 102(4): 828-842, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37460115

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the world. NAFLD has become one of the major factors contributing to hepatocellular carcinoma (HCC) development. However, there are no clear targets and therapeutic drugs for NAFLD-related liver cancer. This study explored the active compounds, target and mechanism of coptidis rhizoma and evodiae fructus in the treatment of NAFLD-related liver cancer based on the network pharmacology and experimental verification. There were 455 intersection targets of NAFLD-related liver cancer, and 65 drug-disease common targets. AKT1 has the highest degree, indicating that it may be a key target of coptidis rhizoma and evodiae fructus in the treatment of NAFLD-related liver cancer. The expression level of AKT1 was high in high-risk group, and the overall survival rate was lower than that in low-risk group. After oleic acid induction, p-AKT expression and lipid droplet deposition were promoted in HepG2 cells. Quercetin and resveratrol reduced lipid droplet deposition in vivo. Moreover, quercetin inhibited p-AKT expression, resveratrol both reduced the expression of p-AKT and AKT. The overall findings suggested that quercetin inhibited AKT in the treatment of NAFLD-related liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Evodia , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Quercetina , Carcinoma Hepatocelular/tratamiento farmacológico , Resveratrol , Gotas Lipídicas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico
2.
Chin Med ; 18(1): 76, 2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37355637

RESUMEN

In chronic infections and cancers, T lymphocytes (T cells) are exposed to persistent antigen or inflammatory signals. The condition is often associated with a decline in T-cell function: a state called "exhaustion". T cell exhaustion is a state of T cell dysfunction characterized by increased expression of a series of inhibitory receptors (IRs), decreased effector function, and decreased cytokine secretion, accompanied by transcriptional and epigenetic changes and metabolic defects. The rise of immunotherapy, particularly the use of immune checkpoint inhibitors (ICIs), has dramatically changed the clinical treatment paradigm for patients. However, its low response rate, single target and high immunotoxicity limit its clinical application. The multiple immunomodulatory potential of traditional Chinese medicine (TCM) provides a new direction for improving the treatment of T cell exhaustion. Here, we review recent advances that have provided a clearer molecular understanding of T cell exhaustion, revealing the characteristics and causes of T cell exhaustion in persistent infections and cancers. In addition, this paper summarizes recent advances in improving T cell exhaustion in infectious diseases and cancer with the aim of providing a comprehensive and valuable source of information on TCM as an experimental study and their role in collaboration with ICIs therapy.

3.
Gastroenterology ; 156(4): 1098-1111, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30452920

RESUMEN

BACKGROUND & AIMS: Activating transcription factor 4 (ATF4) regulates genes involved in the inflammatory response, amino acid metabolism, autophagy, and endoplasmic reticulum stress. We investigated whether its activity is altered in patients with inflammatory bowel diseases (IBDs) and mice with enterocolitis. METHODS: We obtained biopsy samples during endoscopy from inflamed and/or uninflamed regions of the colon from 21 patients with active Crohn's disease (CD), 22 patients with active ulcerative colitis (UC), and 38 control individuals without IBD and of the ileum from 19 patients with active CD and 8 individuals without IBD in China. Mice with disruption of Atf4 specifically in intestinal epithelial cells (Atf4ΔIEC mice) and Atf4-floxed mice (controls) were given dextran sodium sulfate (DSS) to induce colitis. Some mice were given injections of recombinant defensin α1 (DEFA1) and supplementation of l-alanyl-glutamine or glutamine in drinking water. Human and mouse ileal and colon tissues were analyzed by quantitative real-time polymerase chain reaction, immunoblots, and immunohistochemistry. Serum and intestinal epithelial cell (IEC) amino acids were measured by high-performance liquid chromatography-tandem mass spectrometry. Levels of ATF4 were knocked down in IEC-18 cells with small interfering RNAs. Microbiomes were analyzed in ileal feces from mice by using 16S ribosomal DNA sequencing. RESULTS: Levels of ATF4 were significantly decreased in inflamed intestinal mucosa from patients with active CD or active UC compared with those from uninflamed regions or intestinal mucosa from control individuals. ATF4 was also decreased in colonic epithelia from mice with colitis vs mice without colitis. Atf4ΔIEC mice developed spontaneous enterocolitis and colitis of greater severity than control mice after administration of DSS. Atf4ΔIEC mice had decreased serum levels of glutamine and reduced levels of antimicrobial peptides, such as Defa1, Defa4, Defa5, Camp, and Lyz1, in ileal Paneth cells. Atf4ΔIEC mice had alterations in ileal microbiomes compared with control mice; these changes were reversed by administration of glutamine. Injections of DEFA1 reduced the severity of spontaneous enteritis and DSS-induced colitis in Atf4ΔIEC mice. We found that expression of solute carrier family 1 member 5 (SLC1A5), a glutamine transporter, was directly regulated by ATF4 in cell lines. Overexpression of SLC1A5 in IEC-18 or primary IEC cells increased glutamine uptake and expression of antimicrobial peptides. Knockdown of ATF4 in IEC-18 cells increased expression of inflammatory cytokines, whereas overexpression of SLC1A5 in the knockdown cells reduced cytokine expression. Levels of SLC1A5 were decreased in inflamed intestinal mucosa of patients with CD and UC and correlated with levels of ATF4. CONCLUSIONS: Levels of ATF4 are decreased in inflamed intestinal mucosa from patients with active CD or UC. In mice, ATF4 deficiency reduces glutamine uptake by intestinal epithelial cells and expression of antimicrobial peptides by decreasing transcription of Slc1a5. ATF4 might therefore be a target for the treatment of IBD.


Asunto(s)
Factor de Transcripción Activador 4/deficiencia , Péptidos Catiónicos Antimicrobianos/metabolismo , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Glutamina/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Adolescente , Adulto , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Estudios de Casos y Controles , Línea Celular , Colitis/inducido químicamente , Colitis/metabolismo , Colitis Ulcerosa/sangre , Colitis Ulcerosa/patología , Colon/citología , Colon/metabolismo , Enfermedad de Crohn/sangre , Enfermedad de Crohn/patología , Células Epiteliales , Femenino , Técnicas de Silenciamiento del Gen , Glutamina/sangre , Glutamina/farmacología , Humanos , Íleon/citología , Íleon/metabolismo , Íleon/microbiología , Mucosa Intestinal/metabolismo , Masculino , Ratones , Microbiota/efectos de los fármacos , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Células de Paneth/metabolismo , Adulto Joven
4.
Diabetes ; 67(4): 569-580, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29321171

RESUMEN

Although the central nervous system has been implicated in glucocorticoid-induced gain of fat mass, the underlying mechanisms are poorly understood. The aim of this study was to investigate the possible involvement of hypothalamic serum- and glucocorticoid-regulated kinase 1 (SGK1) in glucocorticoid-increased adiposity. It is well known that SGK1 expression is induced by acute glucocorticoid treatment, but it is interesting that we found its expression to be decreased in the arcuate nucleus of the hypothalamus, including proopiomelanocortin (POMC) neurons, following chronic dexamethasone (Dex) treatment. To study the role of SGK1 in POMC neurons, we produced mice that developed or experienced adult-onset SGK1 deletion in POMC neurons (PSKO). As observed in Dex-treated mice, PSKO mice exhibited increased adiposity and decreased energy expenditure. Mice overexpressing constitutively active SGK1 in POMC neurons consistently had the opposite phenotype and did not experience Dex-increased adiposity. Finally, Dex decreased hypothalamic α-melanocyte-stimulating hormone (α-MSH) content and its precursor Pomc expression via SGK1/FOXO3 signaling, and intracerebroventricular injection of α-MSH or adenovirus-mediated FOXO3 knockdown in the arcuate nucleus largely reversed the metabolic alterations in PSKO mice. These results demonstrate that POMC SGK1/FOXO3 signaling mediates glucocorticoid-increased adiposity, providing new insights into the mechanistic link between glucocorticoids and fat accumulation and important hints for possible treatment targets for obesity.


Asunto(s)
Adiposidad/efectos de los fármacos , Dexametasona/farmacología , Proteína Forkhead Box O3/genética , Glucocorticoides/farmacología , Proteínas Inmediatas-Precoces/genética , Neuronas/efectos de los fármacos , Proopiomelanocortina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Adiposidad/genética , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , alfa-MSH/efectos de los fármacos , alfa-MSH/metabolismo
5.
Diabetes ; 66(3): 640-650, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27993927

RESUMEN

Although many functions of activating transcription factor 4 (ATF4) are identified, a role of ATF4 in the hypothalamus in regulating energy homeostasis is unknown. Here, we generated adult-onset agouti-related peptide neuron-specific ATF4 knockout (AgRP-ATF4 KO) mice and found that these mice were lean, with improved insulin and leptin sensitivity and decreased hepatic lipid accumulation. Furthermore, AgRP-ATF4 KO mice showed reduced food intake and increased energy expenditure, mainly because of enhanced thermogenesis in brown adipose tissue. Moreover, AgRP-ATF4 KO mice were resistant to high-fat diet-induced obesity, insulin resistance, and liver steatosis and maintained at a higher body temperature under cold stress. Interestingly, the expression of FOXO1 was directly regulated by ATF4 via binding to the cAMP-responsive element site on its promoter in hypothalamic GT1-7 cells. Finally, Foxo1 expression was reduced in the arcuate nucleus (ARC) of the hypothalamus of AgRP-ATF4 KO mice, and adenovirus-mediated overexpression of FOXO1 in ARC increased the fat mass in AgRP-ATF4 KO mice. Collectively, our data demonstrate a novel function of ATF4 in AgRP neurons of the hypothalamus in energy balance and lipid metabolism and suggest hypothalamic ATF4 as a potential drug target for treating obesity and its related metabolic disorders.


Asunto(s)
Factor de Transcripción Activador 4/genética , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético/genética , Resistencia a la Insulina/genética , Hígado/metabolismo , Neuronas/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Dieta Alta en Grasa , Ingestión de Alimentos/genética , Proteína Forkhead Box O1/metabolismo , Homeostasis , Hipotálamo/citología , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Noqueados , Obesidad/metabolismo
6.
Diabetologia ; 57(10): 2136-44, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25064125

RESUMEN

AIMS/HYPOTHESIS: Recent studies have revealed the crucial role of the central nervous system (CNS), especially the hypothalamus, in the regulation of insulin sensitivity in peripheral tissues. The aim of our current study was to investigate the possible involvement of hypothalamic prolactin receptors (PRLRs) in the regulation of hepatic insulin sensitivity. METHODS: We employed overexpression of PRLRs in mouse hypothalamus via intracerebroventricular injection of adenovirus expressing PRLR and inhibition of PRLRs via adenovirus expressing short-hairpin RNA (shRNA) specific for PRLRs in vivo. Selective hepatic vagotomy was employed to verify the important role of the vagus nerve in mediating signals from the brain to peripheral organs. In addition, a genetic insulin-resistant animal model, the db/db mouse, was used in our study to investigate the role of hypothalamic PRLRs in regulating whole-body insulin sensitivity. RESULTS: Overexpression of PRLRs in the hypothalamus improved hepatic insulin sensitivity in mice and inhibition of hypothalamic PRLRs had the opposite effect. In addition, we demonstrated that hypothalamic PRLR-improved insulin sensitivity was significantly attenuated by inhibiting the activity of signal transducer and activator of transcription 5 (STAT5) in the CNS and by selective hepatic vagotomy. Finally, overexpression of PRLRs significantly ameliorated insulin resistance in db/db mice. CONCLUSIONS/INTERPRETATION: Our study identifies a novel central pathway involved in the regulation of hepatic insulin sensitivity, mediated by hypothalamic PRLR/STAT5 signalling and the vagus nerve, thus demonstrating an important role for hypothalamic PRLRs under conditions of insulin resistance.


Asunto(s)
Hígado/metabolismo , Receptores de Prolactina/metabolismo , Factor de Transcripción STAT5/metabolismo , Nervio Vago/metabolismo , Animales , Células Cultivadas , Hipotálamo/metabolismo , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Prolactina/genética , Factor de Transcripción STAT5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA