Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Agric Food Chem ; 71(48): 18696-18708, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38012857

RESUMEN

Deoxynivalenol (DON), one of the most polluted mycotoxins in the environment and food, has been proven to have strong embryonic and reproductive toxicities. However, the effects of DON on placental impairment and effective interventions are still unclear. This study investigated the effect of ß-carotene on placental functional impairment and its underlying molecular mechanism under DON exposure. Adverse pregnancy outcomes were caused by intraperitoneal injection of DON from 13.5 to 15.5 days of gestation in mice, resulting in higher enrichment of DON in placenta than in other tissue samples. Interestingly, 0.1% ß-carotene dietary supplementation could significantly alleviate DON-induced pregnancy outcomes. Additionally, in vivo and in vitro placental barrier models demonstrated the association of DON-induced placental function impairment with placental permeability barrier disruption, angiogenesis impairment, and oxidative stress induction. Moreover, ß-carotene regulated DON-induced placental toxicity by activating the expressions of claudin 1, zonula occludens-1, and vascular endothelial growth factor-A through retinoic acid-peroxisome proliferator-activated receptor α signaling.


Asunto(s)
PPAR alfa , Placenta , Embarazo , Femenino , Animales , Ratones , Placenta/metabolismo , PPAR alfa/metabolismo , beta Caroteno/farmacología , beta Caroteno/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Tretinoina/metabolismo
2.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37762256

RESUMEN

This study investigated whether dietary supplementation with magnolol affects growth performance, anti-inflammatory abilities, serum and muscle amino acid profiles, and metabolisms in growing pigs. A total of 42 seventy-days-old growing barrows (Duroc × Landrace × Yorkshire) were randomly allocated into two dietary groups: Con, control group (basal diet); and Mag, magnolol group (basal diet supplemented with 400 mg/kg of magnolol). The results revealed that dietary supplementation with magnolol had no effect (p > 0.05) on growth performance. However, magnolol supplementation remarkably increased (p < 0.05) the serum content of albumin, total protein, immunoglobulin G, immunoglobulin M, and interleukin-22. In addition, dietary magnolol supplementation altered the amino acid (AA) profiles in serum and dorsal muscle and particularly increased (p < 0.05) the serum content of arginine and muscle glutamate. Simultaneously, the mRNA expression of genes associated with AA transport in jejunum (SLC38A2, SLC1A5, and SLC7A1) and ileum (SLC1A5 and SLC7A1) was higher (p < 0.05) in the Mag group than in the Con group. Additionally, the serum metabolomics analysis showed that the addition of magnolol significantly enhanced (p < 0.05) arginine biosynthesis, as well as D-glutamine and D-glutamate metabolism. Overall, these results suggested that dietary supplementation with magnolol has the potential to improve the accumulation of AAs, protein synthesis, immunity, and body health in growing pigs by increasing intestinal absorption and the transport of AAs.


Asunto(s)
Aminoácidos , Ácido Glutámico , Porcinos , Animales , Homeostasis , Arginina , Sistemas de Transporte de Aminoácidos , Suplementos Dietéticos , Expresión Génica
3.
Front Immunol ; 12: 753092, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745126

RESUMEN

Increasing evidence support that cellular amino acid metabolism shapes the fate of immune cells; however, whether aspartate metabolism dictates macrophage function is still enigmatic. Here, we found that the metabolites in aspartate metabolism are depleted in lipopolysaccharide (LPS) plus interferon gamma (IFN-γ)-stimulated macrophages. Aspartate promotes interleukin-1ß (IL-1ß) secretion in M1 macrophages. Mechanistically, aspartate boosts the activation of hypoxia-inducible factor-1α (HIF-1α) and inflammasome and increases the levels of metabolites in aspartate metabolism, such as asparagine. Interestingly, asparagine also accelerates the activation of cellular signaling pathways and promotes the production of inflammatory cytokines from macrophages. Moreover, aspartate supplementation augments the macrophage-mediated inflammatory responses in mice and piglets. These results uncover a previously uncharacterized role for aspartate metabolism in directing M1 macrophage polarization.


Asunto(s)
Ácido Aspártico/metabolismo , Inflamasomas/fisiología , Interleucina-1beta/biosíntesis , Macrófagos Peritoneales/inmunología , Animales , Citrobacter rodentium , Colitis/inmunología , Colitis/microbiología , Citocinas/sangre , Infecciones por Enterobacteriaceae/inmunología , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia , Interferón gamma/farmacología , Interleucina-1beta/genética , Lipopolisacáridos/farmacología , Activación de Macrófagos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Porcinos
4.
Front Nutr ; 8: 727951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631766

RESUMEN

Obesity has become one of the most serious chronic diseases threatening human health. Its occurrence and development are closely associated with gut microbiota since the disorders of gut microbiota can promote endotoxin production and induce inflammatory response. Recently, numerous plant extracts have been proven to mitigate lipid dysmetabolism and obesity syndrome by regulating the abundance and composition of gut microbiota. In this review, we summarize the potential roles of different plant extracts including mulberry leaf extract, policosanol, cortex moutan, green tea, honokiol, and capsaicin in regulating obesity via gut microbiota. Based on the current findings, plant extracts may be promising agents for the prevention and treatment of obesity and its related metabolic diseases, and the mechanisms might be associated with gut microbiota.

5.
Front Nutr ; 8: 679129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222303

RESUMEN

Background: Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China. Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota. Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets. Results: Supplemental 4,000 mg/kg MCR significantly increased (P < 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P < 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1ß, inhibiting kappa-B kinase ß (IKKß), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P < 0.05) and the relative abundances of Firmicutes and Lactobacillus (P < 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P < 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P > 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P < 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P < 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg. Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKß/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.

6.
Anim Nutr ; 6(4): 447-456, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33364461

RESUMEN

Animal protein sources such as fishmeal and plasma powder are excellent and indispensable sources of energy, amino acids, and minerals in animal production. Amino acid imbalance, especially methionine-to-sulfur amino acid (Met:SAA) ratio, caused by an imbalance of animal protein meal leads to growth restriction. This study was conducted to evaluate the effects of imbalanced Met:SAA ratio supplementation of different animal protein source diets on growth performance, plasma amino acid profiles, antioxidant capacity and intestinal morphology in a piglet model. Twenty-four weaned piglets (castrated males; BW = 10.46 ± 0.34 kg), assigned randomly into 3 groups (8 piglets/group), were fed for 28 d. Three experimental diets of equal energy and crude protein levels were as follows: 1) a corn-soybean basal diet with a Met:SAA ratio at 0.51 (BD); 2) a plasma powder diet with a low Met:SAA ratio at 0.41 (L-MR); 3) a fishmeal diet with a high Met:SAA ratio at 0.61 (H-MR). Results revealed that compared to BD, L-MR significantly decreased (P < 0.05) the activities of plasma total antioxidant capacity and glutathione peroxidase, plasma amino acid profiles, and significantly reduced (P < 0.05) villus height and crypt depth in the duodenum and jejunum. Additionally, L-MR significantly reduced (P < 0.05) the mRNA expression level of solute carrier family 7 member 9 (SlC7A9) in the ileum, and significantly increased (P < 0.05) mRNA expression levels of zonula occludens-1 (ZO-1) in the duodenum, and Claudin-1, ZO-1, sodium-coupled neutral amino acid transporters 2 (SNAT2) and SlC7A7 in the jejunum. H-MR significantly increased (P < 0.05) plasma SAA levels, and significantly reduced (P < 0.05) average daily feed intake, villus height, and villus height-to-crypt depth (VH:CD) ratio in the ileum compared to BD. In conclusion, L-MR may result in oxidative stress and villous atrophy but proves beneficial in improving intestinal barrier function and the activity of amino acid transporters for compensatory growth. H-MR may impair intestinal growth and development for weaned piglets. The research provides a guidance on the adequate Met:SAA ratio (0.51) supplementation in diet structure for weaned piglets.

7.
J Anim Sci ; 97(11): 4608-4618, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31513711

RESUMEN

In this study, the effects of maternal energy sources during late gestation and lactation on the performance, glucolipid metabolism, and oxidative status of sows and their offspring were investigated using a total of 75 (2 to 6 of parity) Landrace × Large White sows at day 85 of gestation under 3 different dietary treatments: SO diet (basal diet plus 3.0% and 5.0% soybean oil during late gestation and lactation, respectively), FO diet (basal diet plus 3.0%/5.0% fish oil during late gestation and lactation, respectively), and CS diet (basal diet plus 32%/42% corn starch during late gestation and lactation, respectively). All the 3 groups showed no obvious differences (P > 0.05) in the number of total piglets born, born alive, after cross-fostering, and at weaning, whereas the CS group exhibited a shorter farrowing duration (P < 0.05) and lower stillbirth rate (P < 0.05) when compared with the SO group. In addition, litter weight at birth was significantly higher in the CS group than in the SO or FO group (P < 0.05). Despite no notable differences in the ADG of suckling piglets among dietary treatments (P > 0.05), the CS group had greater feed intake than the SO group during the lactation period (P < 0.05). In neonatal piglets with normal birth weight (NBW, 1.3 to 1.5 kg), the CS group was lower than the SO group in the content of liver glycogen (P < 0.05) and the mRNA abundances of fatty acid synthase, acetyl-CoA carboxylase, fatty acid-binding protein 1, and acyl-CoA oxidase (P < 0.05). Interestingly, compared with the SO group, the FO group had a lower preweaning mortality rate (P < 0.05), but greater liver glycogen pools (P < 0.05) in neonatal piglets with low birth weight (LBW, <1.1 kg). Compared with the CS group, the FO group showed an increase in the plasma malondialdehyde levels (P < 0.05) of sows, as well as an increase of 8-hydroxy-deoxyguanosine (P < 0.05) and a decrease of ferric reducing ability of plasma (P < 0.05) in NBW piglets. Overall, the diet rich in starch decreased the stillbirth rate and increased the litter weight of neonatal piglets, the dietary supplementation with fish oil decreased preweaning mortality rate, and the diet with a low n6:n3 ratio increased the oxidative status of sows and their offspring.


Asunto(s)
Suplementos Dietéticos/análisis , Ingestión de Energía , Aceites de Pescado/administración & dosificación , Aceite de Soja/administración & dosificación , Porcinos/fisiología , Alimentación Animal/análisis , Animales , Animales Lactantes , Dieta/veterinaria , Femenino , Lactancia , Fenómenos Fisiologicos Nutricionales Maternos , Oxidación-Reducción , Estrés Oxidativo , Paridad , Embarazo
9.
J Anim Physiol Anim Nutr (Berl) ; 103(3): 791-800, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30815917

RESUMEN

Forty-eight Duroc × Large White × Landrace pigs with an average initial body weight of 77.09 ± 1.37 kg were used to investigate the effects of combination of leucine (Leu) with arginine (Arg) or glutamic acid (Glu) on muscle growth, free amino acid profiles, expression levels of amino acid transporters and growth-related genes in skeletal muscle. The animals were randomly assigned to one of the four treatment groups (12 pigs/group, castrated male:female = 1:1). The pigs in the control group were fed a basal diet (13% Crude Protein), and those in the experimental groups were fed the basal diet supplemented with 1.00% Leu (L group), 1.00% Leu + 1.00% Arg (LA group) or 1.00% Leu + 1.00% Glu (LG group). The experiment lasted for 60 days. Results showed an increase (p < 0.05) in biceps femoris (BF) muscle weight in the L group and LG group relative to the basal diet group. In longissimus dorsi (LD) muscle, Lys, taurine and total essential amino acid concentration increased in the LG group relative to the basal diet group (p < 0.05). In LG group, Glu and carnosine concentrations increased (p < 0.05) in the BF muscle, when compared to the basal diet group. The Leu and Lys concentrations of BF muscle were lower in the LA group than that in the L group (p < 0.05). A positive association was found between BF muscle weight and Leu concentration (p < 0.05). The LG group presented higher (p < 0.05) mRNA levels of ASCT2, LAT1, PAT2, SANT2 and TAT1 in LD muscle than those in the basal diet group. The mRNA levels of PAT2 and MyoD in BF muscle were upregulated (p < 0.05) in the LG group, compared with those in the basal diet group. In conclusion, Leu alone or in combination with Glu is benefit for biceps femoris muscle growth in fattening pig.


Asunto(s)
Arginina/farmacología , Ácido Glutámico/farmacología , Leucina/farmacología , Músculo Esquelético/crecimiento & desarrollo , Porcinos/crecimiento & desarrollo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Arginina/administración & dosificación , Arginina/sangre , Dieta/veterinaria , Suplementos Dietéticos , Quimioterapia Combinada , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/administración & dosificación , Ácido Glutámico/sangre , Leucina/administración & dosificación , Leucina/sangre , Distribución Aleatoria , Regulación hacia Arriba
10.
J Anim Physiol Anim Nutr (Berl) ; 103(3): 846-857, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30775808

RESUMEN

OBJECTIVES: This study aims to investigate the effects and roles of excess leucine (Leu) versus its metabolites α-ketoisocaproate (KIC) and ß-hydroxy-ß-methyl butyrate (HMB) on fatty acid composition and lipid metabolism in skeletal muscle of growing pigs. METHODS AND RESULTS: Thirty-two pigs with a similar initial weight (9.55 ± 0.19 kg) were fed one of the four diets (basal diet, L-Leu, KIC-Ca and HMB-Ca) for 45 days. Results indicated that dietary treatments did not affect the intramuscular fat (IMF) content (p > 0.05), but differently influenced the fatty acid composition of longissimus dorsi muscle (LM) and soleus muscle (SM). In particular, the proportion of N3 PUFA specifically in LM was significantly decreased in the Leu group and increased in both KIC and HMB group relative to the basal diet group (p < 0.05). Furthermore, pigs fed KIC-supplemented diets exhibited decreased expression of FATP-1, ACC, ATGL, C/EBPα, PPARγ and SREBP-1c in LM and increased expression of FATP-1, FAT/CD36, ATGL and M-CPT-1 in SM relative to the basal diet control (p < 0.05). CONCLUSIONS: These findings indicated that doubling dietary Leu content decreased the percentage of N3 PUFA mainly in glycolytic skeletal muscle, whereas KIC and HMB improved muscular fatty acid composition and altered lipid metabolism in skeletal muscle of growing pigs. The mechanism of action of KIC might be related to the TFs, and the mechanism of action of HMB might be associated with the AMPK-mTOR signalling pathway.


Asunto(s)
Ácidos Grasos/metabolismo , Cetoácidos/farmacología , Leucina/farmacología , Músculo Esquelético/efectos de los fármacos , Porcinos/crecimiento & desarrollo , Valeratos/farmacología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Regulación de la Expresión Génica/efectos de los fármacos , Cetoácidos/metabolismo , Leucina/administración & dosificación , Leucina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , ARN Mensajero , Distribución Aleatoria , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción , Valeratos/metabolismo
11.
J Pineal Res ; 65(4): e12524, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30230594

RESUMEN

Melatonin has been shown to improve lipid metabolism and gut microbiota communities in animals and humans; however, it remains to know whether melatonin prevents obesity through gut microbiota. Here, we found that high-fat diet promoted the lipid accumulation and intestinal microbiota dysbiosis in mice, while oral melatonin supplementation alleviated the lipid accumulation and reversed gut microbiota dysbiosis, including the diversity of intestinal microbiota, relative abundances of Bacteroides and Alistipes, and functional profiling of microbial communities, such as energy metabolism, lipid metabolism, and carbohydrate metabolism. Interestingly, melatonin failed to alleviate the high-fat-induced lipid accumulation in antibiotic-treated mice; however, microbiota transplantation from melatonin-treated mice alleviated high-fat diet-induced lipid metabolic disorders. Notably, short-chain fatty acids were decreased in high-fat diet-fed mice, while melatonin treatment improved the production of acetic acid. Correlation analysis found a marked correlation between production of acetic acid and relative abundances of Bacteroides and Alistipes. Importantly, sodium acetate treatment also alleviated high-fat diet-induced lipid metabolic disorders. Taken together, our results suggest that melatonin improves lipid metabolism in high-fat diet-fed mice, and the potential mechanisms may be associated with reprogramming gut microbiota, especially, Bacteroides and Alistipes-mediated acetic acid production. Future studies are needed for patients with metabolic syndrome to fully understand melatonin's effects on body weight and lipid profiles and the potential mechanism of gut microbiota.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Melatonina/fisiología , Animales , Antibacterianos/farmacología , Western Blotting , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos ICR , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Food Nutr Res ; 622018.
Artículo en Inglés | MEDLINE | ID: mdl-30083086

RESUMEN

BACKGROUND: Intestinal stem cells can be differentiated into absorptive enterocytes and secretory cells, including Paneth cells, goblet cells, and enteroendocrine cells. Glutamine is a primary metabolic fuel of small intestinal enterocytes and is essential for the viability and growth of intestinal cells. OBJECTIVE: Whether glutamine supplementation affects the differentiation of intestinal stem cells is unknown. DESIGN: Three-week-old ICR (Institute of Cancer Research) male mice were divided randomly into two groups: 1) mice receiving a basal diet and normal drinking water and 2) mice receiving a basal diet and drinking water supplemented with glutamine. After 2 weeks, the mice were sacrificed to collect the ileum for analysis. RESULTS: The study found that glutamine supplementation in weanling mice decreases the crypt depth in the ileum, leading to higher ratio of villus to crypt in the ileum, but promotes cell proliferation of intestinal cells and mRNA expression of Lgr5 (leucine-rich repeat-containing g-protein coupled receptor5) in the ileum. Glutamine has no effect on the number of Paneth cells and goblet cells, and the expression of markers for absorptive enterocytes, Paneth cells, goblet cells, and enteroendocrine cells. CONCLUSION: These findings reveal the beneficial effects of dietary glutamine supplementation to improve intestinal morphology in weanling mammals.

13.
Sci Rep ; 8(1): 10712, 2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30013051

RESUMEN

Sow milk contains necessary nutrients for piglets; however, the relationship between the levels of metabolites in sow milk and lactation performance has not been thoroughly elucidated to date. In this study, we analysed the metabolites in sow milk from Yorkshire sows with high lactation (HL) or low lactation (LL) performance; these categories were assigned based on the weight gain of piglets during the entire lactation period (D1 to D21). The concentration of milk fat in the colostrum tended to be higher in the HL group (P = 0.05), the level of mannitol was significantly lower in the HL group (P < 0.05) and the level of glucuronic acid lactone was significantly higher in the HL group (P < 0.05) compared to those in LL group. In mature milk, the levels of lactose, creatine, glutamine, glutamate, 4-hydroxyproline, alanine, asparagine, and glycine were significantly higher (P < 0.05) in the HL group than those in LL group. The level of fatty acids showed no significant difference between the two groups in both the colostrum and mature milk. This study suggested that lactation performance may be associated with the levels of lactose and several amino acids in sow milk, and these results can be used to develop new feed additives to improve lactation performance in sows.


Asunto(s)
Crianza de Animales Domésticos/métodos , Fenómenos Fisiológicos Nutricionales de los Animales , Lactancia/fisiología , Leche/química , Sus scrofa/fisiología , Alimentación Animal , Animales , Animales Lactantes/fisiología , Calostro/química , Femenino , Aditivos Alimentarios/farmacología , Lactancia/efectos de los fármacos , Metabolómica , Embarazo , Aumento de Peso/fisiología
14.
Appl Biochem Biotechnol ; 177(8): 1716-28, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26386585

RESUMEN

Inflammatory bowel disease (IBD) correlates with oxidative stress, inflammation, and alteration in several signal pathways, including nuclear transcription factor-kappaB (NF-κB). Pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, has been widely demonstrated to exhibit an antioxidant and anti-inflammatory function. This study aimed to test the hypothesis that NF-κB inhibitor PDTC confers a beneficial role in a colitis model induced by dextran sodium sulfate (DSS) in mouse. The results showed that DSS decreased daily weight gain, induced colonic inflammation, suppressed the expression of antioxidant enzymes and tight junctions, and activated NF-κB and nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling pathways. PDTC significantly upregulated (P < 0.05) Gpx1, Gpx4, occludin, and ZO-1 expressions in the DSS-induced colitis model. Meanwhile, PDTC reversed (P < 0.05) the activation of NF-κB signal pathway caused by DSS treatment. In conclusion, PDTC could serve as an adjuvant therapy for the patient with IBD.


Asunto(s)
Colitis/tratamiento farmacológico , FN-kappa B/metabolismo , Pirrolidinas/administración & dosificación , Tiocarbamatos/administración & dosificación , Animales , Colitis/inducido químicamente , Colitis/inmunología , Citocinas/genética , Sulfato de Dextran , Modelos Animales de Enfermedad , Glutatión Peroxidasa/genética , Masculino , Ratones , Ratones Endogámicos ICR , Ocludina/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Proteína de la Zonula Occludens-1/genética , Glutatión Peroxidasa GPX1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA