Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
Genes (Basel) ; 13(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35052448

RESUMEN

Phosphorus (P) deficiency tolerance in rice is a complex character controlled by polygenes. Through proteomics analysis, we could find more low P tolerance related proteins in unique P-deficiency tolerance germplasm Dongxiang wild rice (Oryza Rufipogon, DXWR), which will provide the basis for the research of its regulation mechanism. In this study, a proteomic approach as well as joint analysis with transcriptome data were conducted to identify potential unique low P response genes in DXWR during seedlings. The results showed that 3589 significant differential accumulation proteins were identified between the low P and the normal P treated root samples of DXWR. The degree of change was more than 1.5 times, including 60 up-regulated and 15 downregulated proteins, 24 of which also detected expression changes of more than 1.5-fold in the transcriptome data. Through quantitative trait locus (QTLs) matching analysis, seven genes corresponding to the significantly different expression proteins identified in this study were found to be uncharacterized and distributed in the QTLs interval related to low P tolerance, two of which (LOC_Os12g09620 and LOC_Os03g40670) were detected at both transcriptome and proteome levels. Based on the comprehensive analysis, it was found that DXWR could increase the expression of purple acid phosphatases (PAPs), membrane location of P transporters (PTs), rhizosphere area, and alternative splicing, and it could decrease reactive oxygen species (ROS) activity to deal with low P stress. This study would provide some useful insights in cloning the P-deficiency tolerance genes from wild rice, as well as elucidating the molecular mechanism of low P resistance in DXWR.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Oryza/metabolismo , Fósforo/toxicidad , Proteínas de Plantas/metabolismo , Proteoma/análisis , Plantones/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/genética , Oryza/efectos de los fármacos , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteoma/metabolismo , Proteómica , Sitios de Carácter Cuantitativo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/toxicidad , Transcriptoma
2.
Biol Res ; 51(1): 7, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29544529

RESUMEN

BACKGROUND: Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. RESULTS: In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. CONCLUSION: The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.


Asunto(s)
Perfilación de la Expresión Génica , Oryza/genética , Fósforo/deficiencia , Plantones/genética , Estrés Fisiológico/genética , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Oryza/efectos de los fármacos , Oryza/fisiología , Fósforo/farmacología , Plantones/efectos de los fármacos , Plantones/fisiología , Estrés Fisiológico/efectos de los fármacos
3.
Biol. Res ; 51: 7, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-888432

RESUMEN

Abstract Background: Low phosphorus availability is a major factor restricting rice growth. Dongxiang wild rice (Oryza rufipogon Griff.) has many useful genes lacking in cultivated rice, including stress resistance to phosphorus deficiency, cold, salt and drought, which is considered to be a precious germplasm resource for rice breeding. However, the molecular mechanism of regulation of phosphorus deficiency tolerance is not clear. Results: In this study, cDNA libraries were constructed from the leaf and root tissues of phosphorus stressed and untreated Dongxiang wild rice seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in phosphorus stress response. The results indicated that 1184 transcripts were differentially expressed in the leaves (323 up-regulated and 861 down-regulated) and 986 transcripts were differentially expressed in the roots (756 up-regulated and 230 down-regulated). 43 genes were up-regulated both in leaves and roots, 38 genes were up-regulated in roots but down-regulated in leaves, and only 2 genes were down-regulated in roots but up-regulated in leaves. Among these differentially expressed genes, the detection of many transcription factors and functional genes demonstrated that multiple regulatory pathways were involved in phosphorus deficiency tolerance. Meanwhile, the differentially expressed genes were also annotated with gene ontology terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes pathway mapping, respectively. A set of the most important candidate genes was then identified by combining the differentially expressed genes found in the present study with previously identified phosphorus deficiency tolerance quantitative trait loci. Conclusion: The present work provides abundant genomic information for functional dissection of the phosphorus deficiency resistance of Dongxiang wild rice, which will be help to understand the biological regulatory mechanisms of phosphorus deficiency tolerance in Dongxiang wild rice.


Asunto(s)
Fósforo/deficiencia , Oryza/genética , Estrés Fisiológico/genética , Perfilación de la Expresión Génica , Plantones/genética , Fósforo/farmacología , Oryza/efectos de los fármacos , Oryza/fisiología , Estrés Fisiológico/efectos de los fármacos , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Plantones/efectos de los fármacos , Plantones/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA