Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Public Health ; 11: 1174334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601185

RESUMEN

Background: Liver cancer is one of the malignant tumors worldwide, while the prevention and control situation is grim at present, and the diffusion of its early screening technology still faces some challenges. This study aims to investigate the influencing mechanism of perceived ease of use, organizational support mechanism, and industry competitive pressure on hepatic early screening technologies use by physicians, so as to promote the wider use of corresponding technologies. Methods: Under the theoretical guidance of technology-organization-environment framework and mindsponge theory, this study took hepatic contrast-enhanced ultrasound as an example, and conducted a cross-sectional questionnaire by randomly selecting physicians from Fujian and Jiangxi provinces in China with a high and low incidence of liver cancer, respectively. Structural equation modeling was used to determine the correlation among perceived ease of use, organizational support mechanism, and industry competitive pressure, as well as their impact on the physicians' behavior toward contrast-enhanced ultrasound use. Results: The hypothesis model fits well with the data (χ2/df = 1.863, GFI = 0.937, AGFI = 0.908, RMSEA = 0.054, NFI = 0.959, IFI = 0.980, CFI = 0.980). Under technology-organization-environment framework, the perceived ease of use (ß = 0.171, p < 0.05), organizational support mechanism (ß = 0.423, p < 0.01), industry competitive pressure (ß = 0.159, p < 0.05) significantly influenced physicians' use of hepatic contrast-enhanced ultrasound. Besides, perceived ease of use and organizational support mechanism (ß = 0.216, p < 0.01), perceived ease of use and industry competitive pressure (ß = 0.671, p < 0.01), organizational support mechanism and industry competitive pressure (ß = 0.330, p < 0.01) were all associated significantly. Conclusion: From the lens of information processing (mindsponge theory) and technology-organization-environment framework, this study clarified the social and psychological influencing mechanism of perceived ease of use, organizational support mechanism, and industry competitive pressure on physicians' use of hepatic contrast-enhanced ultrasound. The results will directly propose recommendations for expanding hepatic contrast-enhanced ultrasound utilization and indirectly promoting other appropriate and effective health technologies diffusion within the integrated health system.


Asunto(s)
Neoplasias Hepáticas , Médicos , Humanos , Detección Precoz del Cáncer , Estudios Transversales
2.
Neurospine ; 20(4): 1358-1379, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38171303

RESUMEN

OBJECTIVE: Herein, we investigated whether mesenchymal stem cells (MSCs) transplantation combined with electroacupuncture (EA) treatment could decrease the proportion of proinflammatory microglia/macrophages and neurotoxic A1 reactive astrocytes and inhibit glial scar formation to enhance axonal regeneration after spinal cord injury (SCI). METHODS: Adult rats were divided into 5 groups after complete transection of the spinal cord at the T10 level: a control group, a nonacupoint EA (NA-EA) group, an EA group, an MSC group, and an MSCs+EA group. Immunofluorescence labeling, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blots were performed. RESULTS: The results showed that MSCs+EA treatment reduced the proportion of proinflammatory M1 subtype microglia/macrophages, but increased the differentiation of anti-inflammatory M2 phenotype cells, thereby suppressing the mRNA and protein expression of proinflammatory cytokines (tumor necrosis factor-α and IL-1ß) and increasing the expression of an anti-inflammatory cytokine (interleukin [IL]-10) on days 7 and 14 after SCI. The changes in expression correlated with the attenuated neurotoxic A1 reactive astrocytes and glial scar, which in turn facilitated the axonal regeneration of the injured spinal cord. In vitro, the proinflammatory cytokines increased the level of proliferation of astrocytes and increased the expression levels of C3, glial fibrillary acidic protein, and chondroitin sulfate proteoglycan. These effects were blocked by administering inhibitors of ErbB1 and signal transducer and activator of transcription 3 (STAT3) (AG1478 and AG490) and IL-10. CONCLUSION: These findings showed that MSCs+EA treatment synergistically regulated the microglia/macrophage subpopulation to reduce inflammation, the formation of neurotoxic A1 astrocytes, and glial scars. This was achieved by downregulating the ErbB1-STAT3 signal pathway, thereby providing a favorable microenvironment conducive to axonal regeneration after SCI.

3.
Neurospine ; 19(3): 757-769, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36203300

RESUMEN

OBJECTIVE: This study aimed to identify differentially expressed genes (DEGs) by transcriptome analysis to elucidate a potential mechanism by which governor vessel electroacupuncture (GV-EA) promotes neuronal survival, axonal regeneration, and functional recovery after complete transection spinal cord injury (SCI). METHODS: Sham, control, or GV-EA group adult female Sprague Dawley rats underwent a complete transection SCI protocol. SCI area RNA-seq investigated the DEGs of coding and noncoding RNAs 7 days post-SCI. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were used to classify DEGs functions, to explain a possible molecular mechanism. Immunofluorescence and BBB (Basso, Beattie, and Bresnahan) score were used to verify a GV-EA treatment effect following SCI. RESULTS: GV-EA treatment could regulate the expression of 173 mRNA, 260 lncRNA, and 153 circRNA genes among these DEGs resulted by SCI. GO enrichment analysis showed that the DEGs were most enriched in membrane, actin binding, and regulation of Toll-like receptor signaling pathway. KEGG pathway analysis showed enriched pathways (e.g. , Toll-like receptors, MAPK, Hippo signaling). According to the ceRNA network, miR-144-3p played a regulatory role by interacting with lncRNA and circRNA. GV-EA also promoted the injured spinal cord neuron survival, axonal regeneration, and functional improvement of hind limb locomotion. CONCLUSION: Results of our RNA-seq suggest that post-SCI GV-EA may regulate characteristic changes in transcriptome gene expression, potential critical genes, and signaling pathways, providing clear directions for further investigation into the mechanism of GV-EA in subacute SCI treatment. Moreover, we found that GV-EA promotes neuronal survival, nerve fiber extension, and motor function recovery in subacute SCI.

4.
Front Public Health ; 10: 778253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372238

RESUMEN

Background: Promoting technology diffusion and utilization is a key measure to address the great disparity in technical capacity within integrated health systems. However, even the effectiveness and appropriateness regarding technology has been widely recognized, its diffusion and utilization are still stagnant. The mechanisms that influence the technology from being recognized to being widely applied in practice remain largely unknown. Purpose: Taking hepatic contrast-enhanced ultrasound (CEUS) as an example, this study aimed to investigate the comprehensive influencing mechanism of organizational atmosphere and organizational practice on the knowledge, attitude, and practice toward diffusion and utilization of hepatic CEUS in the medical alliance. Methods: Based on the integration of organizational ready for change (ORC) and knowledge-attitude-practice (KAP), a structured questionnaire was developed. A multistage random sampling method was applied to investigate physicians who directly use CEUS working at the liver disease-related departments of sampled health institutions. Structural equation modeling (SEM) was used to verify the proposed hypotheses, and determine the relationship between the factors. Results: In total, 292 physicians were included. SEM results demonstrated that knowledge influenced both attitude and practice, while attitude positively predicted practice. Organizational practice and organizational atmosphere associated positively with each other. Organizational atmosphere positively affected the physicians' attitude toward CEUS diffusion and utilization (ß = 0.425, p < 0.001), while organizational practice positively affected corresponding knowledge (ß = 0.423, p < 0.001) and practice (ß = 0.275, p < 0.001). Additionally, there was a partial mediating effect between organizational practice and physicians' CEUS diffusion and utilization behavior. Conclusion: By verifying the influencing mechanism of organizational atmosphere and organizational practice on the physicians' KAP of hepatic CEUS diffusion and utilization, this study benefit tailoring strategies for promoting technology diffusion and utilization within medical alliance. It is recommended to develop an organizational atmosphere of advocating technology innovation, establish organizational support mechanism (SM) with multiple concrete supporting countermeasures, and so on.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Hígado/diagnóstico por imagen , Médicos , Ultrasonografía , Atmósfera , Medios de Contraste , Humanos , Encuestas y Cuestionarios
5.
Artículo en Inglés | MEDLINE | ID: mdl-35280510

RESUMEN

Background: Previous studies have shown that electroacupuncture (EA) has a positive effect on motor and sensory function in patients with spinal cord injury (SCI). This review evaluated the effectiveness of EA for improvement in activities of daily living in patients with SCI. Methods: We searched the Cochrane Library, PubMed, Web of Science, CNKI, WanFang Data, and VIP databases using a search strategy according to the guidelines of the Cochrane Handbook for Systematic Review of Interventions up to 30th September 2020. Only randomized controlled trials (RCTs) of EA in patients with SCI were included. We analyzed the data using RevMan (version 5.3) and graded the quality of evidence using GRADE profiler 3.6.1. Results: This meta-analysis included 10 RCTs with 712 patients. Three studies revealed that the functional independence measure score for SCI patients in the EA group was higher than that in the control group (mean difference [MD] = 13.46, 95% CI: 8.00 to 18.92, P < 0.00001). Five studies showed that the modified Barthel index in the EA group was higher than that in the control group (MD = 6.92, 95% CI: 4.96 to 8.89, P < 0.00001). Five studies showed that the American Spinal Injury Association-motor score (ASIA-motor score) in the EA group was higher than that in the control group (standard MD = 0.96, 95% CI: 0.75 to 1.18, P < 0.00001). Three studies reported the ASIA-tactile and pain scores and also reported that the scores in the EA group were higher than those in the control group, with high homogeneity (tactile I2 = 86%, P = 0.0008; pain I2 = 54%, P = 0.11). The quality of evidence for the use of EA for improvement in motor and sensory function in SCIs was moderate according to the GRADE system. Conclusion: This review suggested that EA improves activities of daily living and motor function in patients with SCI, with a moderate level of evidence.

6.
CNS Neurosci Ther ; 27(12): 1472-1482, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34623740

RESUMEN

AIMS: This study aimed to investigate whether electroacupuncture (EA) promotes the survival and synaptic plasticity of hippocampal neurons by activating brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase (TrkB)/extracellular signal-regulated kinase (Erk) signaling, thereby improving spatial memory deficits in rats under SD. METHODS: In vivo, Morris water maze (MWM) was used to detect the effect of EA on learning and memory, at the same time Western blotting (WB), immunofluorescence (IF), and transmission electron microscopy (TEM) were used to explore the plasticity of hippocampal neurons and synapses, and the expression of BDNF/TrkB/Erk signaling. In vitro, cultured hippocampal neurons were treated with exogenous BDNF and the TrkB inhibitor K252a to confirm the relationship between BDNF/TrkB/Erk signaling and synaptic plasticity. RESULTS: Our results showed that EA mitigated the loss of hippocampal neurons and synapses, stimulated hippocampal neurogenesis, and improved learning and memory of rats under SD accompanied by upregulation of BDNF and increased phosphorylation of TrkB and Erk. In cultured hippocampal neurons, exogenous BDNF enhanced the expression of synaptic proteins, the frequency of the postsynaptic currents, and the phosphorylation of TrkB and Erk; these effects were reversed by treatment with K252a. CONCLUSIONS: Electroacupuncture alleviates SD-induced spatial memory impairment by promoting hippocampal neurogenesis and synaptic plasticity via activation of BDNF/TrkB/Erk signaling, which provided evidence for EA as a therapeutic strategy for countering the adverse effects of SD on cognition.


Asunto(s)
Electroacupuntura , Hipocampo/fisiopatología , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/terapia , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Memoria Espacial/fisiología , Animales , Conducta Animal/fisiología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Supervivencia Celular/fisiología , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Privación de Sueño/complicaciones
7.
CNS Neurosci Ther ; 27(7): 776-791, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33763978

RESUMEN

AIMS: This study was aimed to investigate whether electroacupuncture (EA) would increase the secretion of neurotrophin-3 (NT-3) from injured spinal cord tissue, and, if so, whether the increased NT-3 would promote the survival, differentiation, and migration of grafted tyrosine kinase C (TrkC)-modified mesenchymal stem cell (MSC)-derived neural network cells. We next sought to determine if the latter would integrate with the host spinal cord neural circuit to improve the neurological function of injured spinal cord. METHODS: After NT-3-modified Schwann cells (SCs) and TrkC-modified MSCs were co-cultured in a gelatin sponge scaffold for 14 days, the MSCs differentiated into neuron-like cells that formed a MSC-derived neural network (MN) implant. On this basis, we combined the MN implantation with EA in a rat model of spinal cord injury (SCI) and performed immunohistochemical staining, neural tracing, electrophysiology, and behavioral testing after 8 weeks. RESULTS: Electroacupuncture application enhanced the production of endogenous NT-3 in damaged spinal cord tissues. The increase in local NT-3 production promoted the survival, migration, and maintenance of the grafted MN, which expressed NT-3 high-affinity TrkC. The combination of MN implantation and EA application improved cortical motor-evoked potential relay and facilitated the locomotor performance of the paralyzed hindlimb compared with those of controls. These results suggest that the MN was better integrated into the host spinal cord neural network after EA treatment compared with control treatment. CONCLUSIONS: Electroacupuncture as an adjuvant therapy for TrkC-modified MSC-derived MN, acted by increasing the local production of NT-3, which accelerated neural network reconstruction and restoration of spinal cord function following SCI.


Asunto(s)
Electroacupuntura/métodos , Células Madre Mesenquimatosas/metabolismo , Red Nerviosa/metabolismo , Regeneración Nerviosa/fisiología , Neurotrofina 3/biosíntesis , Receptor trkC/administración & dosificación , Traumatismos de la Médula Espinal/metabolismo , Animales , Animales Recién Nacidos , Técnicas de Cocultivo , Femenino , Neurotrofina 3/genética , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Células de Schwann/metabolismo , Células de Schwann/trasplante , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/terapia
8.
J Neurotrauma ; 38(6): 734-745, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33121345

RESUMEN

Spinal cord injury (SCI) invariably results in neuronal death and failure of axonal regeneration. This is attributed mainly to the hostile microenvironment and the poor intrinsic regrowth capacity of the injured spinal neurons. We have reported previously that electro-acupuncture on Governor Vessel acupoints (GV-EA) can promote neuronal survival and axonal regeneration of injured spinal cord. However, the underlying mechanism for this has remained uncertain. The present study aimed to explore the neural afferent pathway of GV-EA stimulation and the possible mechanism by which GV-EA can activate the intrinsic growth ability of injured spinal neurons. By cholera toxin B (CTB) retrograde labeling, immunostaining, and enzyme-linked immunosorbent assay (ELISA), we showed here that GV-EA could stimulate the spinal nerve branches of the dorsal root ganglion cells. This would then increase the release of calcitonin gene-related peptide (CGRP) from the afferent terminals in the spinal cord. It is of note that the effect was abrogated after dorsal rhizotomy. Additionally, both in vivo and in vitro results showed that CGRP would act on the post-synaptic spinal cord neurons and triggered the synthesis and secretion of neurotrophin-3 (NT-3) by activating the calcitonin gene-related peptide (CGRP)/ receptor activity-modifying protein (RAMP)1/calcium/calmodulin-dependent protein kinase (αCaMKII) pathway. Remarkably, the observed effect was prevented by the dorsal rhizotomy and the blockers of the CGRP/RAMP1/αCaMKII pathway. More importantly, increase in NT-3 promoted the survival, axonal regrowth, and synaptic maintenance of spinal cord neurons in the injured spinal cord. Therefore, it is concluded that increase in NT-3 production is one of the mechanisms by which GV-EA can activate the intrinsic growth ability of spinal neurons after SCI. The experimental results have reinforced the theoretical basis of GV-EA for its clinical efficacy in patients with SCI.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Electroacupuntura/métodos , Neurotrofina 3/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Nervios Espinales/metabolismo , Animales , Femenino , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/terapia
9.
Stem Cell Reports ; 12(2): 274-289, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30661994

RESUMEN

The hostile environment of an injured spinal cord makes it challenging to achieve higher viability in a grafted tissue-engineered neural network used to reconstruct the spinal cord circuit. Here, we investigate whether cell survival and synaptic transmission within an NT-3 and TRKC gene-overexpressing neural stem cell-derived neural network scaffold (NN) transplanted into transected spinal cord could be promoted by electroacupuncture (EA) through improving the microenvironment. Our results showed that EA facilitated the cell survival, neuronal differentiation, and synapse formation of a transplanted NN. Pseudorabies virus tracing demonstrated that EA strengthened synaptic integration of the transplanted NN with the host neural circuit. The combination therapy also promoted axonal regeneration, spinal conductivity, and functional recovery. The findings highlight EA as a potential and safe supplementary therapeutic strategy to reinforce the survival and synaptogenesis of a transplanted NN as a neuronal relay to bridge the two severed ends of an injured spinal cord.


Asunto(s)
Células-Madre Neurales/fisiología , Neuronas/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiología , Animales , Diferenciación Celular/fisiología , Electroacupuntura/métodos , Femenino , Regeneración Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-21697004

RESUMEN

In this work, room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim]PF6) was used as extractant in single drop microextraction (SDME). The traditionally volatile organic extractants were substituted by this green reagent, which changed SDME preconcentration into environmentally friendly method, relatively. After this pretreatment, ultra-trace copper in water and food samples could be accurately detected by spectrophotometer. This study was focused on the improvement of the analytical performance of spectrophotometric determination, expanding its applications. The influence factors relevant to IL-SDME, such as absorption spectra of complex, drop volume of RTIL, stirring rate and time, concentration of chelating agent, pH, and salt effect were studied systematically. Under the optimal conditions, the limit of detection (LOD) was 0.15 µg L(-1) with an enhancement factor (EF) of 33. The proposed method was green, simple, rapid, sensitive, and cost-efficient.


Asunto(s)
Cobre/aislamiento & purificación , Imidazoles/química , Líquidos Iónicos/química , Leche/química , Té/química , Contaminantes Químicos del Agua/análisis , Agua/análisis , Animales , Concentración de Iones de Hidrógeno , Límite de Detección , Espectrofotometría , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA