Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Braz J Microbiol ; 55(1): 543-556, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38261262

RESUMEN

Endophytic fungi have been recognized as a valuable source for the production of biologically active compounds with potential applications in various domains. This study aimed to isolate endophytic fungi from Ampelopsis japonica (Thunb.) Makino and assess their anti-MRSA activity. Meanwhile, chromatographic separation techniques were applied to analyze the constituents of endophytic fungal secondary metabolites. The isolate BLR24, which exhibited strong inhibition activity against MRSA, was identified as Trichoderma virens based on morphological characteristics and ITS sequence analyses. The ethyl acetate extract of BLR24 (EA-BLR24) showed good anti-MRSA activity with the MIC and MBC values of 25 µg/mL and 50 µg/mL, separately. The inhibition of biofilm formation was up to 34.67% under MIC concentration treatment. Meanwhile, EA-BLR24 could significantly reduce the expression of biofilm-related genes (icaA, sarA, and agrA) of MRSA. Based on LC-MS/MS analysis, twenty compounds in EA-BLR24 could be annotated using the GNPS platform, mainly diketopiperazines. The anti-MRSA compound (Fr.1.1) was obtained from EA-BLR24 by bioassay-guided fractionation and determined as gliotoxin. The results indicated that endophytic Trichoderma virens BLR24 isolated from the medical plant A. japonica roots could be a promising source of natural anti-MRSA agents. Endophytic fungal secondary metabolites are abundant in biologically active compounds. Endophytic fungi from medicinal plants could be a source yielding bioactive metabolites of pharmaceutical importance.


Asunto(s)
Ampelopsis , Staphylococcus aureus Resistente a Meticilina , Plantas Medicinales , Trichoderma , Cromatografía Liquida , Espectrometría de Masas en Tándem , Endófitos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36796216

RESUMEN

BACKGROUND: The herbal pair of Salvia miltiorrhiza Bunge and Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep (DG) is commonly used in the treatment of type 2 diabetes (T2DM) in traditional Chinese medicine (TCM). The drug pair DG was designed by Dr. Zhu chenyu to improve the treatment of T2DM. AIM: This study combined with systematic pharmacology and urine metabonomics to explore the mechanism of DG in the treatment of T2DM. METHODS: The therapeutic effect of DG on T2DM was evaluated by fasting blood glucose (FBG) and biochemical indexes. Systematic pharmacology was used to screen the active components and targets that may be related to DG. Metabonomics was established to find urinary metabolites and pathways that may be induced by DG. Finally, integrate the results of these two parts for mutual verification. RESULTS: FBG and biochemical indexes showed that DG could reduce FBG and adjust the related biochemical indexes. Metabolomics analysis indicated that 39 metabolites were related to DG for T2DM treatment. In addition, systematic pharmacology showed compounds and potential targets which were associated with DG. Finally, 12 promising targets were selected as targets for T2DM therapy by integrating the results. CONCLUSION: The combination of metabonomics and systematic pharmacology based on LC-MS is feasible and effective, which provides strong support for exploring the effective components and pharmacological mechanism of TCM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Pueraria , Salvia miltiorrhiza , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Salvia miltiorrhiza/química , Pueraria/química , Farmacología en Red , Metabolómica/métodos , Medicamentos Herbarios Chinos/farmacología
3.
Zhongguo Zhong Yao Za Zhi ; 43(17): 3477-3483, 2018 Sep.
Artículo en Chino | MEDLINE | ID: mdl-30347915

RESUMEN

The aim of this study was to investigated the biological diversity, antibacterial activites and the plant growth-promoting traits of endophytic fungi of sandal (Santalum album), and to assess their potential in the development of antibacterial substances and rapid cultivation of sandal. The results of isolation and taxa analysis of endophytic fungi from sandal showed that 325 strains of endophytic fungi belonging to 16 genera of endophytic fungi were isolated from sandal (of which 86 from roots, 105 from stems and 134 from leaves). The isolation rate and colonization rate of endophytic fungi in different sandal parts showed the same pattern of change: leave>stems>roots. The diversity index of endophytic fungi in sandal roots was significantly higher than that of stems and leaves. The dominant endophytic fungi of sandal roots, stems and leaves showed significant differences. The dominant endophytic fungi of roots were Fusarium (50.00%) and Alternaria (10.47%), Alternaria (58.11%) and Acremonium (20.00%) for stems, and Pantoea (74.63%) for leaves. The antibacterial activity of 40 representative strains of sandal endophytic fungi were analyzed and the results showed that 90% of endophytic fungi exhibited inhibitory activity against at least one of the tested bacteria strains, and the strains with inhibitory activity to Escherichia coli, Enterobacter aerogenes, Shigella dysenteriae, Salmonella typhimurium, Staphylococcus aureus, and Bacillus subtilis accounted for 45.0%, 30%, 47.5%, 55%, 72.5%, and 62.5%, respectively. The sandal fungal endophytes with plant growth-promoting characteristics were screened, and 5 strains of endophytic fungi with phosphorus-solubilizing activity, 8 strains of endophytic fungi producing IAA, and 4 strains of endophytic fungi producing siderophores were found. Among them, endophytic fungus Monilia sp TXRF45 clould produced IAA and siderophores, and also show phosphate-solubilizing activity. The results indicated that the endophytic fungi of Sandal were rich in species diversity and their distribution had a certain tissue specificity. Some strains showed good antibacterial activity and growth-promoting properties, which could potentially applicable for the development of antibacterial substances and rapid cultivation of sandal.


Asunto(s)
Antibiosis , Bacterias , Endófitos/química , Santalum/microbiología , Sideróforos/química , Biodiversidad , Endófitos/clasificación , Hongos/química , Hongos/clasificación , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Tallos de la Planta/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA