Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 470: 134182, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583202

RESUMEN

Establishing an economic and sustained Fenton oxidation system to enhance sludge dewaterability and carbamazepine (CBZ) removal rate is a crucial path to simultaneously achieve sludge reduction and harmless. Leveraging the principles akin to "tea making", we harnessed tea waste to continually release tea polyphenols (TP), thus effectively maintaining high level of oxidation efficiency through the sustained Fenton reaction. The results illustrated that the incorporation of tea waste yielded more favorable outcomes in terms of water content reduction and CBZ removal compared to direct TP addition within the Fe(III)/hydrogen peroxide (H2O2) system. Concomitantly, this process mainly generated hydroxyl radical (•OH) via three oxidation pathways, effectively altering the properties of extracellular polymeric substances (EPS) and promoting the degradation of CBZ from the sludge mixture. The interval addition of Fe(III) and H2O2 heightened extracellular oxidation efficacy, promoting the desorption and removal of CBZ. The degradation of EPS prompted the transformation of bound water to free water, while the formation of larger channels drove the discharge of water. This work achieved the concept of treating waste with waste through using tea waste to treat sludge, meanwhile, can provide ideas for subsequent sludge harmless disposal.


Asunto(s)
Carbamazepina , Peróxido de Hidrógeno , Hierro , Oxidación-Reducción , Aguas del Alcantarillado , , Contaminantes Químicos del Agua , Carbamazepina/química , Peróxido de Hidrógeno/química , Té/química , Aguas del Alcantarillado/química , Hierro/química , Contaminantes Químicos del Agua/química , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Eliminación de Residuos Líquidos/métodos , Compuestos Férricos/química , Polifenoles/química
2.
Water Res ; 183: 116051, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32622233

RESUMEN

Nutrient limitation is a biofouling control strategy in reverse osmosis (RO) membrane systems. In seawater, the assimilable organic carbon content available for bacterial growth ranges from about 50 to 400 µg C·L-1, while the phosphorus concentration ranges from 3 to 11 µg P·L-1. Several studies monitored biofouling development, limiting either carbon or phosphorus. The effect of carbon to phosphorus ratio and the restriction of both nutrients on membrane system performance have not yet been investigated. This study examines the impact of reduced phosphorus concentration (from 25 µg P·L-1 and 3 µg P·L-1, to a low concentration of ≤0.3 µg P·L-1), combined with two different carbon concentrations (250 C L-1 and 30 µg C·L-1), on biofilm development in an RO system. Feed channel pressure drop was measured to determine the effect of the developed biofilm on system performance. The morphology of the accumulated biomass for both carbon concentrations was characterized by optical coherence tomography (OCT) and the biomass amount and composition was quantified by measuring total organic carbon (TOC), adenosine triphosphate (ATP), total cell counts (TCC), and extracellular polymeric substances (EPS) concentration for the developed biofilms under phosphorus restricted (P-restricted) and dosed (P-dosed) conditions. For both carbon concentrations, P-restricted conditions (≤0.3 µg P·L-1) limited bacterial growth (lower values of ATP, TCC). A faster pressure drop increase was observed for P-restricted conditions compared to P-dosed conditions when 250 µg C·L-1 was dosed. This faster pressure drop increase can be explained by a higher area covered by biofilm in the flow channel and a higher amount of produced EPS. Conversely, a slower pressure drop increase was observed for P-restricted conditions compared to P-dosed conditions when 30 µg C·L-1 was dosed. Results of this study demonstrate that P-limitation delayed biofilm formation effectively when combined with low assimilable organic carbon concentration and thereby, lengthening the overall membrane system performance.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Biopelículas , Carbono , Membranas Artificiales , Ósmosis , Fósforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA