Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Topogr ; 33(2): 176-190, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31832813

RESUMEN

The posterior parietal cortex (PPC) is a key structure for visual attention and upper limb function, two features that could be impaired after stroke, and could be implied in their recovery. If it is well established that stroke is responsible for intra- and interhemispheric connectivity troubles, little is known about those existing for the contralesional PPC. In this study, we aimed at mapping the functional (using resting state fMRI) and structural (using diffusion tensor imagery) networks from 3 subparts of the PPC of the contralesional hemisphere (the anterior intraparietal sulcus), the posterior intraparietal sulcus and the superior parieto-occipital cortex to bilateral frontal areas and ipsilesional homologous PPC parts in 11 chronic stroke patients compared to 13 healthy controls. We also aimed at assessing the relationship between connectivity and the severity of visuospatial and motor deficiencies. We showed that interhemispheric functional and structural connectivity between PPCs was altered in stroke patients compared to controls, without any specificity among seeds. Alterations of parieto-frontal intra- and interhemispheric connectivity were less observed. Neglect severity was associated with several alterations in intra- and interhemispheric connectivity, whereas we did not find any behavioral/connectivity correlations for motor deficiency. The results of this exploratory study shed a new light on the influence of the contralesional PPC in post-stroke patients, they have to be confirmed and refined in further larger studies.


Asunto(s)
Trastornos Motores/fisiopatología , Lóbulo Parietal/patología , Lóbulo Parietal/fisiopatología , Trastornos de la Percepción/fisiopatología , Accidente Cerebrovascular/fisiopatología , Atención , Imagen de Difusión Tensora , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Occipital/fisiopatología
2.
Clin Neurophysiol ; 130(5): 863-875, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699666

RESUMEN

OBJECTIVE: To identify possible electroencephalographic (EEG) markers of donepezil's effect on cortical activity in young, healthy adult volunteers at the group level. METHODS: Thirty subjects were administered a daily dose of either 5mg donepezil or placebo for 15days in a double-blind, randomized, cross-over trial. The electroencephalogram during an auditory oddball paradigm was recorded from 58 scalp electrodes. Current source density (CSD) transformations were applied to EEG epochs. The event-related potential (ERP), inter-trial coherence (ITC: the phase consistency of the EEG spectrum) and event-related spectral perturbation (ERSP: the EEG power spectrum relative to the baseline) were calculated for the target (oddball) stimuli. RESULTS: The donepezil and placebo conditions differed in terms of the changes in delta/theta/alpha/beta ITC and ERSP in various regions of the scalp (especially the frontal electrodes) but not in terms of latency and amplitude of the P300-ERP component. CONCLUSION: Our results suggest that ITC and ERSP analyses can provide EEG markers of donepezil's effects in young, healthy, adult volunteers at a group level. SIGNIFICANCE: Novel EEG markers could be useful to assess the therapeutic potential of drug candidates in Alzheimer's disease in healthy volunteers prior to the initiation of Phase II/III clinical studies in patients.


Asunto(s)
Encéfalo/efectos de los fármacos , Donepezilo/farmacología , Potenciales Evocados/efectos de los fármacos , Nootrópicos/farmacología , Estimulación Acústica , Adulto , Estudios Cruzados , Método Doble Ciego , Electroencefalografía , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
3.
Neurophysiol Clin ; 48(6): 337-359, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30487063

RESUMEN

Impaired locomotion is a frequent and major source of disability in patients with neurological conditions. Different neuroimaging methods have been used to understand the brain substrates of locomotion in various neurological diseases (mainly in Parkinson's disease) during actual walking, and while resting (using mental imagery of gait, or brain-behavior correlation analyses). These studies, using structural (i.e., MRI) or functional (i.e., functional MRI or functional near infra-red spectroscopy) brain imaging, electrophysiology (i.e., EEG), non-invasive brain stimulation (i.e., transcranial magnetic stimulation, or transcranial direct current stimulation) or molecular imaging methods (i.e., PET, or SPECT) reveal extended brain networks involving both grey and white matters in key cortical (i.e., prefrontal cortex) and subcortical (basal ganglia and cerebellum) regions associated with locomotion. However, the specific roles of the various pathophysiological mechanisms encountered in each neurological condition on the phenotype of gait disorders still remains unclear. After reviewing the results of individual brain imaging techniques across the common neurological conditions, such as Parkinson's disease, dementia, stroke, or multiple sclerosis, we will discuss how the development of new imaging techniques and computational analyses that integrate multivariate correlations in "large enough datasets" might help to understand how individual pathophysiological mechanisms express clinically as an abnormal gait. Finally, we will explore how these new analytic methods could drive our rehabilitative strategies.


Asunto(s)
Locomoción , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Humanos , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología
4.
Exp Brain Res ; 146(1): 86-94, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12192582

RESUMEN

We sought to understand the basic neural processes involved in the functional linking of motor cortical points. We asked which of the two basic neural mechanisms, excitation or inhibition, is required to functionally link motor cortical points. In the ketamine-anaesthetized cat, a microstimulation electrode was positioned at a point (control point) that was identified by the following three characteristics of the EMG responses: the muscle(s) activated at threshold, any additional muscles recruited by supra-threshold stimulation, and their relative latency. A second distinct point (test point) producing activation of a muscle at a different joint was then identified. At this test cortical point the GABA(A) receptor antagonist bicuculline was ejected iontophoretically, while stimulating the control point near threshold. A combined response was elicited consisting of the response normally elicited at the control point plus that elicited at the test point. Thus, an artificial muscle synergy was produced following disinhibition of the test point. This was never the case when glutamate was ejected at the test point, even when supra-threshold stimuli were used at the control point. Therefore, simply increasing the excitability of a cortical point was not sufficient to release the muscle(s) represented at that point into a muscle synergy. Kynurenate, a broadly acting excitatory amino acid receptor antagonist, ejected at the bicuculline point reversed the effect of bicuculline. This shows that the release phenomenon was mediated synaptically and was not due to spread of the stimulating current. We suggest that release from inhibition may be one of the neural mechanisms involved in functionally linking motor cortical points. This functional linking may be part of the ensemble of motor cortical mechanisms involved in recruitment of muscle synergies.


Asunto(s)
Corteza Motora/fisiología , Red Nerviosa/fisiología , Animales , Bicuculina/farmacología , Gatos , Estimulación Eléctrica , Electromiografía , Antagonistas de Aminoácidos Excitadores/farmacología , Miembro Anterior/inervación , Miembro Anterior/fisiología , Antagonistas del GABA/farmacología , Ácido Glutámico/farmacología , Iontoforesis , Ácido Quinurénico/farmacología , Microelectrodos , Corteza Motora/efectos de los fármacos , Movimiento , Red Nerviosa/efectos de los fármacos , Hombro/inervación , Hombro/fisiología , Técnicas Estereotáxicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA