Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834889

RESUMEN

Silver nanoparticles (AgNPs) were fabricated using Trigonella foenum-graceum L. leaf extract, belonging to the variety HM 425, as leaf extracts are a rich source of phytochemicals such as polyphenols, flavonoids, and sugars, which function as reducing, stabilizing, and capping agents in the reduction of silver ions to AgNPs. These phytochemicals were quantitatively determined in leaf extracts, and then, their ability to mediate AgNP biosynthesis was assessed. The optical, structural, and morphological properties of as-synthesized AgNPs were characterized using UV-visible spectroscopy, a particle size analyzer (PSA), FESEM (field emission scanning electron microscopy), HRTEM (high-resolution transmission electron microscopy), and FTIR (Fourier transform infrared spectroscopy). HRTEM analysis demonstrated the formation of spherically shaped AgNPs with a diameter of 4-22 nm. By using the well diffusion method, the antimicrobial potency of AgNPs and leaf extract was evaluated against microbial strains of Staphylococcus aureus, Xanthomonas spp., Macrophomina phaseolina, and Fusarium oxysporum. AgNPs showed significant antioxidant efficacy with IC50 = 426.25 µg/mL in comparison to leaf extract with IC50 = 432.50 µg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH). The AgNPs (64.36 mg AAE/g) demonstrated greater total antioxidant capacity using the phosphomolybdneum assay compared to the aqueous leaf extract (55.61 mg AAE/g) at a concentration of 1100 µg/mL. Based on these findings, AgNPs may indeed be useful for biomedical applications and drug delivery systems in the future.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Trigonella , Antioxidantes/química , Antibacterianos/química , Plata/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Antiinfecciosos/química , Espectroscopía Infrarroja por Transformada de Fourier
2.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770623

RESUMEN

The aqueous Trigonella foenum-graecum L. leaf extract belonging to variety HM 444 was used as reducing agent for silver nanoparticles (AgNPs) synthesis. UV-Visible spectroscopy, Particle size analyser (PSA), Field emission scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (FESEM-EDX) and High-resolution transmission electron microscopy (HRTEM) were used to characterize AgNPs. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. Fourier Transform Infrared Spectroscopy (FTIR) was done to find out the possible phytochemicals responsible for stabilization and capping of the AgNPs. The produced AgNPs had an average particle size of 21 nm, were spherical in shape, and monodispersed. It showed catalytic degradation of Methylene blue (96.57%, 0.1665 ± 0.03 min-1), Methyl orange (71.45%, 0.1054 ± 0.002 min-1), and Rhodamine B (92.72%, 0.2004 ± 0.01 min-1). The produced AgNPs were excellent solid bio-based sensors because they were very sensitive to Hg2+ and Fe3+ metal ions with a detection limit of 11.17 µM and 195.24 µM, respectively. From the results obtained, it was suggested that aqueous leaf extract demonstrated a versatile and cost-effective method and should be utilized in future as green technology for the fabrication of nanoparticles.


Asunto(s)
Mercurio , Nanopartículas del Metal , Trigonella , Colorantes/metabolismo , Plata/química , Trigonella/química , Colorimetría , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de Fourier , Mercurio/metabolismo , Tecnología Química Verde/métodos , Extractos Vegetales/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA