Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Ethnopharmacol ; 323: 117717, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38181937

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Nerium oleander is used to treat liver-associated chronic metabolic diseases in traditional medicinal systems across the globe. The hepatoprotective effects of oleander are mentioned in Indian and Chinese traditional medicinal literature. AIM OF THE STUDY: The present study aimed to investigate the cellular mechanisms behind the hepatoprotective effects of a non-toxic dose of oleander (NO). MATERIALS AND METHODS: The hepatoprotective effects of NO were tested against lipopolysaccharide (LPS)-treated HepG2 cells. Oxidative stress response was studied using cellular enzymatic assays, and gene expression was analyzed using qRT-PCR. HepG2 cells were pretreated with TAK-242 (pharmacological inhibitor of TLR4) to decipher the anti-inflammatory mechanisms of NO. Cell-free metabolites were analyzed using GCMS and were subjected to pathway enrichment analysis. RESULTS: NO reduced systemic inflammation, serum lipid peroxidation byproducts, and glucose without affecting serum transaminase levels and hepatic histopathological features. NO attenuated the inflammation-induced loss of antioxidant enzyme activities and mRNA expressions of toll-like receptor-4 (TLR4)/nuclear factor κß (NFκß)-dependent inflammatory genes. In TAK-242 pretreated cells, LPS was unable to induce inflammatory and oxidative responses. However, NO treatment in TAK-242 pretreated cells with LPS stimulation further reduced the signs of inflammation and improved hepatoprotective activities. A comparative analysis of the intracellular global metabolome from HepG2 cells with and without NO treatment indicated NO-mediated favorable modulation of intracellular metabolic pathways that support cytoprotective activities. CONCLUSION: NO protects HepG2 cells from LPS-induced oxidative and inflammatory injury. The hepatoprotective effects of NO are mediated by a TLR4-independent process and through a favorable modulation of the intracellular global metabolome that supports cytoprotection.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nerium , Sulfonamidas , Humanos , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Citoprotección , Antioxidantes/farmacología , Antioxidantes/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Metaboloma
2.
Phytomedicine ; 123: 155207, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000106

RESUMEN

BACKGROUND: The intestinal-level host-microbiota interaction has been implicated in the pathogenesis of chronic diseases. The current review is intended to provide a comprehensive insight into deciphering whether intestinal-level bioactivities mediate the overall metabolic health benefits of green tea catechins. PURPOSE: We have comprehensively discussed pre-clinical and clinical evidences of intestinal-level changes in metabolism, microbiota, and metabolome due to catechin-rich green tea treatments, ultimately limiting metabolic diseases. Exclusive emphasis has been given to purified catechins and green tea, and discussions on extraintestinal mechanisms of metabolic health benefits were avoided. METHODS: A literature search for relevant pre-clinical and clinical studies was performed in various online databases (e.g., PubMed) using specific keywords (e.g., catechin, intestine, microbiota). Out of all the referred literature, ∼15% belonged to 2021-2023, ∼51% were from 2011-2020, and ∼32% from 2000-2010. RESULT: The metabolic health benefits of green tea catechins are indeed influenced by the intestinal-level bioactivities, including reduction of mucosal inflammation and oxidative stress, attenuation of gut barrier dysfunction, decrease in intestinal lipid absorption and metabolism, favorable modulation of mucosal nuclear receptor signaling, alterations of the luminal global metabolome, and mitigation of the gut dysbiosis. The results from the recent clinical studies support the pre-clinical evidences. The challenges and pitfalls of the currently available knowledge on catechin bioactivities have been discussed, and constructive directions to harness the translational benefits of green tea through future interventions have been provided. CONCLUSION: The metabolism, metabolome, and microbiota at the intestinal epithelia play critical roles in catechin metabolism, pharmacokinetics, bioavailability, and bioactivities. Especially the reciprocal interaction between the catechins and the gut microbiota dictates the metabolic benefits of catechins.


Asunto(s)
Catequina , , Catequina/farmacocinética , Estrés Oxidativo , Disponibilidad Biológica , Metaboloma
4.
Toxicon ; 224: 107047, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706925

RESUMEN

Nerium oleander L. is a medicinal plant, used for the treatment of cancers and hyperglycemia across the world, especially in Indian sub-continent, Turkey, Morocco, and China. Although clinical studies supporting its pharmacological effects remain critically underexplored, accidental and intentional consumption of any part of the plant causes fatal toxicity in animals and humans. While the polyphenolic fraction of oleander leaves has been attributed to its pre-clinical pharmacological activities, the presence of diverse cardiac glycosides (especially oleandrin) causes apoptosis to cancer cells in vitro and results in clinical signs of oleander poisoning. Thus, the dual pharmacological and toxicological role of oleander is a perplexing dichotomy in phytotherapy. The current investigative review, therefore, intended to analyze the intrinsic and extrinsic factors that likely contribute to this conundrum. Especially by focusing on gut microbial diversity, abundance, and metabolic functions, oleander-associated pharmacological and toxicological studies have been critically analyzed to define the dual effects of oleander. Electronic databases were extensively screened for relevant research articles (including pre-clinical and clinical) related to oleander bioactivities and toxicity. Taxonomic preference was given to the plant N. oleander L. and synonymous plants as per 'The World Flora Online' database (WCSP record #135196). Discussion on yellow oleander (Cascabela thevetia (L.) Lippold) has intentionally been avoided since it is a different plant. The review indicates that the gut microbiota likely plays a key role in differentially modulating the pharmacological and toxicological effects of oleander. Other factors identified influencing the oleander bioactivities include dose and mode of treatment, cardiac glycoside pharmacokinetics, host-endogenous glycosides, plant material processing and phytochemical extraction methods, plant genotypic variations, environmental effects on the phytochemical quality and quantity, gene expression variations, host dietary patterns and co-morbidity, etc. The arguments proposed are also relevant to other medicinal plants containing toxic cardiac glycosides.


Asunto(s)
Glicósidos Cardíacos , Nerium , Intoxicación por Plantas , Plantas Medicinales , Humanos , Animales , Intoxicación por Plantas/etiología , Fitoterapia
5.
J Nutr Biochem ; 109: 109094, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35777589

RESUMEN

Green tea extract (GTE) alleviates obesity, in part, by modulating gut microbial composition and metabolism. However, direct evidence regarding the catechin-specific bioactivities that are responsible for these benefits remain unclear. The present study therefore investigated dietary supplementation of GTE, epigallocatechin gallate (EGCG), or (+)-catechin (CAT) in male C57BL6/J mice that were fed a high-fat (HF) diet to establish the independent contributions of EGCG and CAT relative to GTE to restore microbial and host metabolism. We hypothesized that EGCG would regulate the gut microbial metabolome and host liver metabolome more similar to GTE than CAT to explain their previously observed differential effects on cardiometabolic health. To test this, we assessed metabolic and phenolic shifts in liver and fecal samples during dietary HF-induced obesity. Ten fecal metabolites and ten liver metabolites (VIP > 2) primarily contributed to the differences in the metabolome among different interventions. In fecal samples, nine metabolic pathways (e.g., tricarboxcylic acid cycle and tyrosine metabolism) were differentially altered between the GTE and CAT interventions, whereas three pathways differed between GTE and EGCG interventions, suggesting differential benefits of GTE and its distinctive bioactive components on gut microbial metabolism. Likewise, hepatic glycolysis / gluconeogenesis metabolic pathways were significantly altered between GTE and EGCG interventions, while only hepatic tyrosine metabolism was altered between CAT and GTE interventions. Thus, our findings support that purified catechins relative to GTE uniquely contribute to regulating host and microbial metabolic pathways such as central energy metabolism to protect against metabolic dysfunction leading to obesity.


Asunto(s)
Catequina , Microbioma Gastrointestinal , Animales , Antioxidantes , Catequina/análogos & derivados , Catequina/farmacología , Dieta Alta en Grasa/efectos adversos , Hígado , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Obesidad/prevención & control , Extractos Vegetales/farmacología , , Tirosina
6.
Nutrients ; 14(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35458108

RESUMEN

Poor diet quality influences cardiometabolic risk. Although potatoes are suggested to adversely affect cardiometabolic health, controlled trials that can establish causality are limited. Consistent with potatoes being rich in micronutrients and resistant starch, we hypothesized that their inclusion in a Dietary Guidelines for Americans (DGA)-based dietary pattern would improve cardiometabolic and gut health in metabolic syndrome (MetS) persons. In a randomized cross-over trial, MetS persons (n = 27; 32.5 ± 1.3 year) consumed a DGA-based diet for 2 weeks containing potatoes (DGA + POTATO; 17.5 g/day resistant starch) or bagels (DGA + BAGEL; 0 g/day resistant starch) prior to completing oral glucose and gut permeability tests. Blood pressure, fasting glucose and insulin, and insulin resistance decreased (p < 0.05) from baseline regardless of treatment without any change in body mass. Oral glucose-induced changes in brachial artery flow-mediated dilation, nitric oxide homeostasis, and lipid peroxidation did not differ between treatment arms. Serum endotoxin AUC0−120 min and urinary lactulose/mannitol, but not urinary sucralose/erythritol, were lower in DGA + POTATO. Fecal microbiome showed limited between-treatment differences, but the proportion of acetate was higher in DGA + POTATO. Thus, short-term consumption of a DGA-based diet decreases cardiometabolic risk, and the incorporation of resistant starch-containing potatoes into a healthy diet reduces small intestinal permeability and postprandial endotoxemia.


Asunto(s)
Enfermedades Cardiovasculares , Síndrome Metabólico , Solanum tuberosum , Adulto , Glucemia/metabolismo , Glucosa , Humanos , Política Nutricional , Sobrepeso , Permeabilidad , Almidón Resistente , Solanum tuberosum/metabolismo
7.
Phytother Res ; 35(11): 6148-6169, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34816512

RESUMEN

Uncontrolled inflammatory responses or cytokine storm associated with viral infections results in deleterious consequences such as vascular leakage, severe hemorrhage, shock, immune paralysis, multi-organ failure, and even death. With the emerging new viral infections and lack of effective prophylactic vaccines, evidence-based complementary strategies that limit viral infection-mediated hyperinflammatory responses could be a promising approach to limit host tissue injury. The present review emphasizes the potentials of antiinflammatory phytochemicals in limiting hyperinflammatory injury caused by viral infections. The predominant phytochemicals along with their mechanism in limiting hyperimmune and pro-inflammatory responses under viral infection have been reviewed comprehensively. How certain phytochemicals can be effective in limiting hyper-inflammatory response indirectly by favorably modulating gut microbiota and maintaining a functional intestinal barrier has also been presented. Finally, we have discussed improved systemic bioavailability of phytochemicals, efficient delivery strategies, and safety measures for effective antiinflammatory phytotherapies, in addition to emphasizing the requirement of tightly controlled clinical studies to establish the antiinflammatory efficacy of the phytochemicals. Collectively, the review provides a scooping overview on the potentials of bioactive phytochemicals to mitigate pro-inflammatory injury associated with viral infections.


Asunto(s)
Fitoquímicos , Virosis , Antiinflamatorios/farmacología , Humanos , Intestinos , Fitoquímicos/farmacología , Fitoterapia , Virosis/tratamiento farmacológico , Virosis/prevención & control
8.
Pharmacol Res ; 161: 105135, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32814166

RESUMEN

The intestinal epithelial layer serves as a physical and functional barrier between the microbe-rich lumen and immunologically active submucosa; it prevents systemic translocation of microbial pyrogenic products (e.g. endotoxin) that elicits immune activation upon translocation to the systemic circulation. Loss of barrier function has been associated with chronic 'low-grade' systemic inflammation which underlies pathogenesis of numerous no-communicable chronic inflammatory disease. Thus, targeting gut barrier dysfunction is an effective strategy for the prevention and/or treatment of chronic disease. This review intends to emphasize on the beneficial effects of herbal formulations, phytochemicals and traditional phytomedicines in attenuating intestinal barrier dysfunction. It also aims to provide a comprehensive understanding of intestinal-level events leading to a 'leaky-gut' and systemic complications mediated by endotoxemia. Additionally, a variety of detectable markers and diagnostic criteria utilized to evaluate barrier improving capacities of experimental therapeutics has been discussed. Collectively, this review provides rationale for targeting gut barrier dysfunction by phytotherapies for treating chronic diseases that are associated with endotoxemia-induced systemic inflammation.


Asunto(s)
Antiinflamatorios/uso terapéutico , Endotoxemia/tratamiento farmacológico , Fármacos Gastrointestinales/uso terapéutico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Animales , Antiinflamatorios/efectos adversos , Antiinflamatorios/aislamiento & purificación , Bacterias/inmunología , Bacterias/metabolismo , Enfermedad Crónica , Disbiosis , Endotoxemia/metabolismo , Endotoxemia/microbiología , Endotoxemia/patología , Endotoxinas/metabolismo , Fármacos Gastrointestinales/efectos adversos , Fármacos Gastrointestinales/aislamiento & purificación , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Permeabilidad , Extractos Vegetales/efectos adversos , Extractos Vegetales/aislamiento & purificación
9.
J Nutr Biochem ; 84: 108455, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32688217

RESUMEN

Catechin-rich green tea extract (GTE) protects against nonalcoholic steatohepatitis (NASH) by alleviating gut-derived endotoxin translocation and hepatic Toll-like receptor-4 (TLR4)-nuclear factor κB (NFκB) inflammation. We hypothesized that intact GTE would attenuate NASH-associated responses along the gut-liver axis to a greater extent than purified (-)-epigallocatechin gallate (EGCG) or (+)-catechin (CAT). Male C57BL/6J mice were fed a low-fat diet, a high-fat (HF) diet, or the HF diet with 2% GTE, 0.3% EGCG or 0.3% CAT for 8 weeks prior to assessing NASH relative to endotoxemia, hepatic and intestinal inflammation, intestinal tight junction proteins (TJPs) and gut microbial ecology. GTE prevented HF-induced obesity to a greater extent than EGCG and CAT, whereas GTE and EGCG more favorably attenuated insulin resistance. GTE, EGCG and CAT similarly attenuated serum alanine aminotransferase and serum endotoxin, but only GTE and EGCG fully alleviated HF-induced NASH. However, hepatic TLR4/NFκB inflammatory responses that were otherwise increased in HF mice were similarly attenuated by GTE, EGCG and CAT. Each treatment also similarly prevented the HF-induced loss in expression of intestinal TJPs and hypoxia inducible factor-1α and the otherwise increased levels of ileal and colonic TNFα mRNA and fecal calprotectin protein concentrations. Gut microbial diversity that was otherwise lowered in HF mice was maintained by GTE and CAT only. Further, microbial metabolic functions were more similar between GTE and CAT. Collectively, GTE catechins similarly protect against endotoxin-TLR4-NFκB inflammation in NASH, but EGCG and CAT exert differential prebiotic and antimicrobial activities suggesting that catechin-mediated shifts in microbiota composition are not entirely responsible for their benefits along the gut-liver axis.


Asunto(s)
Catequina/análogos & derivados , Catequina/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Sustancias Protectoras/uso terapéutico , , Animales , Catequina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Sustancias Protectoras/farmacología , Té/química
10.
Biomed Pharmacother ; 129: 110422, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32563990

RESUMEN

Nerium oleander L., commonly known as oleander, is a toxic shrub and also a medicinal plant. All parts of oleander are rich in cardiac glycosides that inhibits Na+/K+-ATPase and induce inotropic effect on the cardiomyocytes. Several pre-clinical and clinical reports indicate acute toxicity due to intentional, accidental and suicidal oleander consumption. Contrarily, oleander is used for the treatment of diverse ailments in traditional medicinal practices around the globe and several evidence-based pre-clinical studies indicated metabolic and immunological health benefits of polyphenol-rich oleander extracts. Thus, the current review aims to address this pharmaco-toxicological conundrum of oleander by addressing the possible role of gut microflora in the differential oleander toxicity. Additionally, a comprehensive account of ethnopharmacological usage, metabolic and immunological health benefits has been documented that supplement the conflicting arguments of pharmaco-toxicological properties of oleander. Finally, by addressing the gap of knowledge of ethnomedicinal, pharmacological and toxicological reports of oleander, the current review is expected to pave the way to address the differential pharmaco-toxicological effects of oleander.


Asunto(s)
Bacterias/metabolismo , Intestinos/microbiología , Nerium , Extractos Vegetales/farmacología , Animales , Biotransformación , Etnofarmacología , Microbioma Gastrointestinal , Humanos , Nerium/química , Nerium/toxicidad , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Extractos Vegetales/toxicidad , Plantas Medicinales , Medición de Riesgo
11.
Food Funct ; 10(10): 6351-6361, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31503268

RESUMEN

Nonalcoholic steatohepatitis (NASH) increases hepatocellular carcinoma (HCC) risk. We hypothesized that the hepatoprotective anti-inflammatory benefits of catechin-rich green tea extract (GTE) would protect against HCC progression by inhibiting NASH-associated liver injury and pro-oncogenic responses. We used an HCC model in high-fat (HF)-fed mice that mimics early oncogenic events during NASH without inducing tumorigenesis and premature mortality. Male C57BL/6J mice (4-weeks old) were fed a HF diet containing GTE at 0% or 2%. Mice were administered saline or diethylnitrosamine (DEN; 60 mg kg-1, i.p.) at 5-weeks and 7-weeks of age. NASH, inflammation, fibrosis, and oncogenic responses were assessed at 25-weeks of age. Saline-treated mice showed prominent histopathological signs of steatosis and hepatocellular ballooning. Although DEN did not impact adiposity, steatosis, ballooning and hepatic lipid accumulation, these parameters were attenuated by GTE regardless of DEN. Hepatic lipid peroxidation and fibrosis that were increased by DEN were attenuated by GTE. Hepatic TLR4, MCP1 and TNFα mRNA levels were unaffected by DEN, whereas iNOS was increased by DEN. These transcripts were lowered by GTE. GTE attenuated the frequency of PCNA+ hepatocytes and mRNA expression of cyclin D1, MIB1 and Ki-67 that were otherwise increased by DEN. GTE increase APAF1 mRNA that was otherwise lowered by DEN. Relative to saline-treated mice, DEN increased mRNA levels of oncostatin M, gp130, c-Fos, c-Myc and survivin; each was lowered by GTE in DEN-treated mice. These findings indicate that GTE may protect against hepatic oncogenesis by limiting early steps in the carcinogenic cascade related to NASH-associated HCC.


Asunto(s)
Camellia sinensis/química , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Extractos Vegetales/administración & dosificación , Sustancias Protectoras/administración & dosificación , Animales , Antiinflamatorios/administración & dosificación , Carcinogénesis , Dieta Alta en Grasa/efectos adversos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
12.
J Tradit Complement Med ; 9(4): 243-248, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31453118

RESUMEN

Viburnum erubescens Wall., Rhododendron arboretum Sm., Eurya japonica Thumb., Symplocos lucida (Thunb.) Siebold & Zucc, and Symplocos pyrifolia Wall. ex G. Don are extensively used by the native and ethnic populations of the South-Eastern Himalayan region for several dermatological conditions, yet their phytochemical composition remained largely unknown. Therefore, the aim of the study was to explore the therapeutically relevant volatile phytochemical compositions and study the molecular interactions against intracellular cytoregulatory transcription factors. Leaves of the five plants were subjected to Gas chromatography-Mass spectrometry (GCMS) post silylation derivation. The results were further analyzed using multivariate statistical methods such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). A total of 115 compounds were identified in the five plants. Multivariate analysis revealed optimum metabolomic correlation between S. pyrifolia and S. lucida (0.876), whereas lowest correlation was found between E. japonica and V. erubescens (-0.242). Arbutin, ß-amyrin, betulin, ß-sitosterol and stigmasterol demonstrated highest interaction with the molecular targets. Collectively, the present study revealed the bioactive volatile phytochemicals responsible the therapeutic uses against diverse skin conditions.

13.
Pharmacol Res ; 147: 104367, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31344423

RESUMEN

The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Fitoquímicos/farmacología , Fitoterapia , Animales , Biotransformación , Dieta , Humanos , Fitoquímicos/farmacocinética
14.
J Nutr Biochem ; 67: 78-89, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30856467

RESUMEN

Gut-derived endotoxin translocation provokes obesity by inducing TLR4/NFκB inflammation. We hypothesized that catechin-rich green tea extract (GTE) would protect against obesity-associated TLR4/NFκB inflammation by alleviating gut dysbiosis and limiting endotoxin translocation. Male C57BL/6J mice were fed a low-fat (LF) or high-fat (HF) diet containing 0% or 2% GTE for 8 weeks. At Week 7, fluorescein isothiocyanate (FITC)-dextran was administered by oral gavage before assessing its serum concentrations as a gut permeability marker. HF-feeding increased (P<.05) adipose mass and adipose expression of genes involved in TLR4/NFκB-dependent inflammation and macrophage activation. GTE attenuated HF-induced obesity and pro-inflammatory gene expression. GTE in HF mice decreased serum FITC-dextran, and attenuated portal vein and circulating endotoxin concentrations. GTE in HF mice also prevented HF-induced decreases in the expression of intestinal tight junction proteins (TJPs) and hypoxia inducible factor-1α while preventing increases in TLR4/NFκB-dependent inflammatory genes. Gut microbial diversity was increased, and the Firmicutes:Bacteroidetes ratio was decreased, in HF mice fed GTE compared with HF controls. GTE in LF mice did not attenuate adiposity but decreased endotoxin and favorably altered several gut bacterial populations. Serum FITC-dextran was correlated with portal vein endotoxin (P<.001; rP=0.66) and inversely correlated with colonic mRNA levels of TJPs (P<.05; rP=-0.38 to -0.48). Colonic TJPs mRNA were inversely correlated with portal endotoxin (P<.05; rP=-0.33 to -0.39). These data suggest that GTE protects against diet-induced obesity consistent with a mechanism involving the gut-adipose axis that limits endotoxin translocation and consequent adipose TLR4/NFκB inflammation by improving gut barrier function.


Asunto(s)
Disbiosis/dietoterapia , Endotoxinas/metabolismo , Paniculitis/dietoterapia , Té/química , Animales , Dieta Alta en Grasa/efectos adversos , Disbiosis/metabolismo , Dislipidemias/etiología , Dislipidemias/prevención & control , Endotoxemia/metabolismo , Endotoxemia/prevención & control , Gastroenteritis/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Obesidad/microbiología , Paniculitis/metabolismo , Extractos Vegetales/farmacología , Receptor Toll-Like 4/metabolismo
15.
PLoS One ; 13(4): e0196411, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29709010

RESUMEN

The progress in industrialization has blessed mankind with a technologically superior lifestyle but poor management of industrial waste has in turn poisoned nature. One such chemical is carbon tetra chloride (CCl4), which is a potent environmental toxin emitted from chemical industries and its presence in the atmosphere is increasing at an alarming rate. Presence of CCl4 in human body is reported to cause liver damage through free radical mediated inflammatory processes. Kupffer cells present in the liver are potentially more sensitive to oxidative stress than hepatocytes. Kuffer cells produced tumor necrosis factor-α (TNF-α) in response to reactive oxygen species (ROS), that might further cause inflammation or apoptosis. In this study hepatoprotective capacity of antioxidant rich extract of Croton bonplandianus Baill. (CBL) was evaluated on CCl4 induced acute hepatotoxicity in murine model. Hydro-methanolic extract of C. bonplandianus leaf was used for evaluation of free radical scavenging activity. Liver cells of experimental mice were damaged using CCl4 and subsequently hepatoprotective potential of the plant extract was evaluated using series of in-vivo and in-vitro studies. In the hepatoprotective study, silymarin was used as a positive control. Antioxidant enzymes, pro-inflammatory markers, liver enzymatic and biochemical parameters were studied to evaluate hepatoprotective activity of Croton bonplandianus leaf extract. Free radical scavenging activity of CBL extract was also observed in WRL-68 cell line. The phytochemicals identified by GCMS analysis were scrutinized using in-silico molecular docking procedure. The results showed that CBL extract have potent free radical scavenging capacity. The biochemical parameters were over expressed due to CCl4 administration, which were significantly normalized by CBL extract treatment. This finding was also supported by histopathological evidences showing less hepatocellularnecrosis, inflammation and fibrosis in CBL and silymarin treated group, compared to CCl4 group. ROS generated due to H2O2 in WRL-68 cell line were normalize in the highest group (200 µg/ml) when compared with control and negative control (CCl4) group. After molecular docking analysis, it was observed that the compound α-amyrin present in the leaf extract of C. bonplandianus has better potentiality to protect hepatocellular damages than the standard drug Silymarin. The present study provided supportive evidence that CBL extract possesses potent hepatoprotective capacity by ameliorating haloalkane induced liver injury in the murine model. The antioxidant and anti-inflammatory activities also affirm the same. The synergistic effects of the phytochemicals present in CBL are to be credited for all the hepatoprotective activity claimed above.


Asunto(s)
Antioxidantes/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Croton/química , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Tetracloruro de Carbono , Línea Celular , Eritrocitos/metabolismo , Flavonoides/química , Cromatografía de Gases y Espectrometría de Masas , Glutatión/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/química , Pruebas de Función Hepática , Masculino , Ratones , Simulación del Acoplamiento Molecular , Fenol/química , Hojas de la Planta/química , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
J Ethnopharmacol ; 210: 275-286, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28859934

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acacia nilotica (L.) Delile is used as a traditional anti-diabetic remedy in Bangladesh, Pakistan, Egypt, Nigeria and is mentioned in Ayurveda as well. AIM: The objective of the study was to evaluate the ethnomedicinal claim of A. nilotica leaf (ANL) extract for its efficiency in ameliorating diabetic complications. MATERIALS AND METHODS: ANL was orally administrated (50 and 200mg/kg) to alloxanized mice (blood glucose > 200mg/dL) for 20d. Parameters of glucose metabolism, hepatotoxicity, hyperlipidemia and nephrotoxicity were measured with emphasis on elevated oxidative stress. ANL was chemically characterized using GC-MS. Further, docking studies were employed to predict molecular interactions. RESULTS: ANL lowered (65%, P< 0.001) systemic glucose load in diabetic mice, which was otherwise 398% higher than control. ANL lowered (35%) insulin resistance, without any significant effect on insulin sensitivity (P> 0.05). Anti-hyperglycemic properties of ANL was further supported by lowering of HbA1c (34%; P< 0.001) and improved glucose utilization (OGTT). Overall diabetic complications were mitigated as reflected by lowered hepatic (ALT, AST) and renal (creatinine, BUN) injury markers and normalization of dyslipidemia. Elevated systemic oxidative stress was lowered by increased catalase and peroxidase activities in liver, kidney and skeletal muscle, resulting in 32% decrease of serum MDA levels. Apart from high phenolic and flavonoid content, tocopherol, catechol and ß-sitosterol, identified in ANL, demonstrated substantial binding affinity with Nrf2 protein (5FNQ) reflecting possible crosstalk with intracellular antioxidant defense pathways. CONCLUSION: The present study revealed the potentials of A. nilotica to alleviate diabetes-related systemic complications by limiting oxidative stress which justified the ethnopharmacological antidiabetic claim.


Asunto(s)
Acacia/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Resistencia a la Insulina , Extractos Vegetales/farmacología , Administración Oral , Animales , Antioxidantes/metabolismo , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Relación Dosis-Respuesta a Droga , Cromatografía de Gases y Espectrometría de Masas , Hemoglobina Glucada/metabolismo , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Masculino , Medicina Tradicional , Ratones , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Hojas de la Planta
17.
J Nutr Biochem ; 53: 58-65, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29190550

RESUMEN

Green tea extract (GTE) reduces NFκB-mediated inflammation during nonalcoholic steatohepatitis (NASH). We hypothesized that its anti-inflammatory activities would be mediated in a Toll-like receptor 4 (TLR4)-dependent manner. Wild-type (WT) and loss-of-function TLR4-mutant (TLR4m) mice were fed a high-fat diet containing GTE at 0 or 2% for 8 weeks before assessing NASH, NFκB-mediated inflammation, TLR4 and its adaptor proteins MyD88 and TRIF, circulating endotoxin, and intestinal tight junction protein mRNA expression. TLR4m mice had lower (P<.05) body mass compared with WT mice but similar adiposity, whereas body mass and adiposity were lowered by GTE regardless of genotype. Liver steatosis, serum alanine aminotransferase, and hepatic lipid peroxidation were also lowered by GTE in WT mice, and were similarly lowered in TLR4m mice regardless of GTE. Phosphorylation of the NFκB p65 subunit and pro-inflammatory genes (TNFα, iNOS, MCP-1, MPO) were lowered by GTE in WT mice, and did not differ from the lowered levels in TLR4m mice regardless of GTE. TLR4m mice had lower TLR4 mRNA, which was also lowered by GTE in both genotypes. TRIF expression was unaffected by genotype and GTE, whereas MyD88 was lower in mice fed GTE regardless of genotype. Serum endotoxin was similarly lowered by GTE regardless of genotype. Tight junction protein mRNA levels were unaffected by genotype. However, GTE similarly increased claudin-1 mRNA in the duodenum and jejunum and mRNA levels of occludin and zonula occluden-1 in the jejunum and ileum. Thus, GTE protects against inflammation during NASH, likely by limiting gut-derived endotoxin translocation and TLR4/MyD88/NFκB activation.


Asunto(s)
Hígado/efectos de los fármacos , FN-kappa B/metabolismo , Obesidad/prevención & control , , Receptor Toll-Like 4/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Hígado/metabolismo , Ratones Endogámicos C3H , Ratones Mutantes , Factor 88 de Diferenciación Mieloide/metabolismo , Enfermedad del Hígado Graso no Alcohólico/dietoterapia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones , Obesidad/etiología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Proteínas de Uniones Estrechas/metabolismo , Receptor Toll-Like 4/genética
18.
J Evid Based Complementary Altern Med ; 22(4): 624-631, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29228808

RESUMEN

In the present study, we have phytochemically characterized 5 different abundant Aloe species, including Aloe vera (L.) Burm.f., using silylation followed by Gas Chromatography-Mass Spectrometry technique and compared the data using multivariate statistical analysis. The results demonstrated clear distinction of the overall phytochemical profile of A vera, highlighted by its divergent spatial arrangement in the component plot. Lowest correlation of the phytochemical profiles were found between A vera and A aristata Haw. (-0.626), whereas highest correlation resided between A aristata and A aspera Haw. (0.899). Among the individual phytochemicals, palmitic acid was identified in highest abundance cumulatively, and carboxylic acids were the most predominant phytochemical species in all the Aloe species. Compared to A vera, linear correlation analysis revealed highest and lowest correlation with A aspera ( R2 = 0.9162) and A aristata ( R2 = 0.6745), respectively. Therefore, A vera demonstrated distinct spatial allocation, reflecting its greater phytochemical variability.


Asunto(s)
Aloe/química , Ácidos Carboxílicos/análisis , Cromatografía de Gases y Espectrometría de Masas , Valor Nutritivo , Ácido Palmítico/análisis , Fitoquímicos/análisis , Fitoterapia , Extractos Vegetales
19.
BMC Complement Altern Med ; 17(1): 55, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28100224

RESUMEN

BACKGROUND: Lagerstroemia speciosa (L.) Pers. has medicinal importance. Bioactive phytochemicals isolated from different parts of L. speciosa, have revealed hypoglycemic, antibacterial, anti-inflammatory, antioxidant and hepato protective properties. Despite one report from Philippines detailing the use of L. speciosa as curative for fever and as well as diuretic, there is no experimental evidence about the hepatoprotective activity of the flower extracts. METHODS: Several spectroscopic methods, including GC-MS, were used to characterize phytochemicals present in the petal extract of L. speciosa. Ethanol extract of petals was evaluated for anti-oxidant and free radical scavenging properties by using methods related to hydrogen atom transfer, single electron transfer, reducing power, and metal chelation. This study has also revealed the in vitro antioxidant and in vivo hepatoprotective properties of petal extract against carbon tetra chloride (CCl4)-induced liver toxicity in Swiss albino mice. Hepatoprotection in CCl4 -intoxicated mice was studied with the aid of histology and different enzymatic and non-enzymatic markers of liver damage. Cytotoxicity tests were done using murein spleenocytes and cancareous cell lines, MCF7 and HepG2. RESULT: GCMS of the extract has revealed the presence of several potential antioxidant compounds, of them γ-Sitosterol and 1,2,3-Benzenetriol (Pyrogallol) were the predominant ones. The antioxidants activities of the flower-extract were significantly higher than curcumin (in terms of Nitric oxide scavenging activity; p = 0.0028) or ascorbic acid (in terms of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) assay; p = 0.0022). The damage control by the flower extract can be attributed to the reduction in lipid peroxidation and restoration of catalase activity. In vitro cytotoxicity tests have shown that the flower extract did not affect growth and survivability of the cell lines. It left beyond doubt that a flower of L. speciosa is a reservoir of antioxidant and hepatoprotective agents capable of reversing the damage inflicted by CCl4-intoxication. CONCLUSION: Results from the present study may be used in developing a potential hepato-protective health drink enriched with antioxidants from Lagerstroemia speciosa (L.) Pers.


Asunto(s)
Depuradores de Radicales Libres/farmacología , Lagerstroemia/química , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Animales , Antioxidantes/farmacología , Tetracloruro de Carbono , Línea Celular Tumoral , Femenino , Flores/química , Depuradores de Radicales Libres/toxicidad , Células Hep G2 , Humanos , Lagerstroemia/toxicidad , Masculino , Ratones , Extractos Vegetales/toxicidad
20.
BMC Complement Altern Med ; 16(1): 280, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27516209

RESUMEN

BACKGROUND: Nerium oleander L. (syn. Nerium indicum Mill, Nerium odorum Aiton) belongs to the family Apocynaceae. It is used for its anti-inflammatory, anti-diabetic, anti-cancer and hepatoprotective activities in traditional medicine. Previous pharmacognostic studies suggested that 70 % hydro-methanolic extracts of oleander possess potent free radical scavenging and anti-inflammatory activities, both of which are helpful against hepatotoxicity. METHODS: Hydro-methanolic extracts of oleander stem and root were evaluated for their hepatoprotective activities in acute CCl4 intoxicated mouse through in vitro and in vivo studies. Silymarin was used as positive reference. Antioxidant enzymes, pro-inflammatory markers and liver enzymatic and biochemical parameters were studied. The extracts were further chemically characterized using Fourier Transform Infrared (FTIR) spectroscopy and Gas chromatography-mass spectrometry (GC-MS). RESULTS: CCl4 toxicity caused fatty liver formation by increase of relative liver weight (32.53 g) compared to control group (16.08 g). The elevated liver enzymatic and biochemical parameters due to CCl4 toxicity were considerably normalized by the extracts treatment under both in vivo and in vitro models. Oleander stem (NOSE) and root (NORE) extracts increased the reduced hepatic catalase activity 27.37 and 25.25 %, whereas peroxidase activity was increased 18.19 and 22.78 %, respectively. The extent of lipid peroxidation was significantly (p < 0.01) lowered 20.76 % (NOSE) and 21.12 % (NORE) compared to CCl4 group. The levels of pro-inflammatory tumor necrosis factor-α (TNF-α) was lowered 71.33 % (NOSE) and 61.60 % (NORE). Histopathological study demonstrated substantial reduction of hepatocellular necrosis, fatty infiltration, sinusoidal dilation, bile duct proliferation, vascular congestion, leukocyte infiltration in the silymarin and extract treated groups. Furthermore, various bioactive compounds were identified in the extracts such as apocynin, tocopherol, squalene, vanillin, isoeugenol, amyrin, lupeol etc. CONCLUSION: The present study provided convincing evidence that oleander extracts possess potent hepatoprotective capacity which was primarily governed by its antioxidant and anti-inflammatory activities. The collegial bioactivities of the phytochemicals may be accredited behind the hepatoprotective activity of oleander.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/efectos de los fármacos , Nerium/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/química , Antioxidantes/química , Peso Corporal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Femenino , Peroxidación de Lípido/efectos de los fármacos , Hígado/patología , Masculino , Ratones , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA