Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 286(Pt 1): 131572, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34303910

RESUMEN

Superparamagnetic nanocomposites integrated with multiple metals, and surface engineered nanoparticles play a vital role in the removal of heavy metals. In the present study, amino-functional silica-coated magnetic nanocomposites with biochar synthesised from Cynodon dactylon plant residues are prepared in a single step reaction process. The synthesised nanocomposites are characterized using various analytical techniques such as FTIR to determine their functional entities, SEM, TEM, EDX and VSM to analyse the size (~50 nm), elements and magnetic nature of the nanocomposites. Characterization reveals that the prepared nanobiochar was coated with silica and a specific amine group. The magnetic saturation value of 50 emu/g confirms the prepared sorbent was superparamagnetic. Kinetics, isotherm and thermodynamics parameters are evaluated to study the metal interaction mechanism with the nanocomposites where the system follows pseudo-second-order kinetics and the four-parameter Fritz Schlunder model for both metal ions. The nanocomposites showed the enhanced adsorption capacity of copper (Cu(II)) ions with 220.4 mg/g and 185.4 mg/g for lead (Pb(II)) ions. The nanocomposites also showed the excessive reusing ability of 15 times with the maximum removal efficiency for Cu(II) and Pb(II) metal ions. Column studies are evaluated to demonstrate the vital performance in the removal of Cu(II) ions and the breakthrough point was inferred for the parameters such as concentration (100-300 mg/L), bed height (1-3 cm) and flow rate (2-4 mL/min). The breakthrough point was attained at 1400 min and the removal efficiency of about 64.58% was obtained.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Adsorción , Cobre , Cynodon , Concentración de Iones de Hidrógeno , Iones , Cinética , Plomo
2.
J Environ Health Sci Eng ; 19(2): 1413-1424, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34900276

RESUMEN

Magnetic nanoparticles owing to their superparamagnetic behaviour and specific reactive sites are facilitated to regenerate and reuse. Our present study determines the cointegration of the plant extracts of Cynodon dactylon and Muraya koenigii with the magnetic nanoparticle coated with silica layer and surface engineered with a specific amine group. The cointegrated magnetic nano adsorbent is characterized for its analytical feature and batch studies are performed to remove zinc (Zn2+) copper (Cu2+) metal ions. Fourier transform infrared spectroscopy reveals the presence of functional entities such as NH2, Si-O-Si, C=C. The size of the cointegrated nano adsorbent (12-30 nm) was confirmed by field emission scanning electron microscopy whereas, a high-resolution transmission electron microscope affirms the nanosize of the particle constituted around 20 nm. Energy dispersive x-ray analysis confirms the presence of elements like Fe, N, Si and was confirmed by X-ray diffraction analysis and vibrating sample magnetometer affirms the superparamagnetic nature with the high magnetic saturation value (Ms - 30 emug-1). The cointegrated nano adsorbent reveals the maximum adsorption capacity of Zn2+ as 78.24 mg.g-1 and Cu2+ as 81.76 mg.g-1 of the adsorbent under the optimized conditions of contact time 45 min, pH 6.0 and temperature 35 °C. Kinetics such as pseudo-first-order, pseudo-second-order, Elovich, intraparticle diffusion and isotherm studies like Langmuir, Freundlich, Dubinin-Radushkevich and Temkin were performed to understand the mechanism of interaction between the nanoadsorbent and metal ions. The reaction system follows the pseudo-second-order kinetics and Langmuir isotherm model for both the Cu2+ and Zn2+ metal ions. To determine the reusing capacity of the cointegrated nanoadsorbent, the adsorption efficiency was studied for continuous twelve cycles with 80% recovery after subsequent acid treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-021-00696-9.

3.
IET Nanobiotechnol ; 15(4): 402-410, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34694711

RESUMEN

Magnetic nanoparticles are desirable adsorbents because of their unique superparamagnetic nature with the enhanced binding specificity and surface material interaction. The above unique features attract researchers to use it for wider applications. Herein, the study focuses on the amino-induced silica-layered magnetic nanoparticles amalgamated with plant-extracted products of Cynodon dactylon in order to turn them into a potent adsorbing material in a continuous column set up for the elimination of noxiously distributed Cr(VI) ionsin the effluents. The selected plant-mediated magnetite nanoadsorbent, which was used in the fixed column studies, is optimised with the attributes of inlet concentration, adsorbent bed depth, and flow rate. Thomas, Yoon-Nelson and bed depth model showed the best experimental fit. Breakthrough adsorption time was reported for the various inlet concentrations of 100, 200 and 300 mg/L, adsorbent bed depths 2, 3 and 4 cm and volumetric flow rates of 4, 5 and 6 mL/min. The breakthrough point evaluated for the optimised attribute of inlet concentration of 100 mg/L, packed adsorbent depth 4 cm and flow rate 4 mL/min was 1400 min and the maximum removal efficiency was 60.6%. A better insight of the adsorption of metal ions for large-scale industrial effluents is provided.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cromo , Cynodon , Iones , Fenómenos Magnéticos , Dióxido de Silicio
4.
IET Nanobiotechnol ; 14(6): 449-456, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32755953

RESUMEN

Immobilised magnetic nanoparticles are extensively used owing to their superparamagnetic nature, surface interaction, and binding specificity with the appropriate portentous substances. The present research focuses on the development of a portentous, robust carrier, which integrates the silica-coated amino-functionalised magnetic nanoparticle (AF-MnP) with the plant extracts of Cynodon dactylon (L1) and Muraya koenigii (L2) for the stable and enhanced removal of hazardous hexavalent chromium pollutant in the wastewater. Vibrating sample magnetometer (Ms - 45 emu/g) determines the superparamagnetic properties; Fourier-transform infrared spectroscopy determines the presence of functional groups such as NH2, Si-O-Si, C=C; high-resolution transmission electron microscopy, field emission scanning electron microscope and energy-dispersive X-ray spectroscopy determine the size of the green adsorbents in the range of 20 nm and the presence of elements such as Fe, N, and Si determines the efficacy of the synthesised silica-coated AF-MnP. The AF-MnP-L1 shows the maximum adsorption capacity of 34.7 mg/g of sorbent calculated from the Langmuir isotherm model and the process follows pseudo-second-order kinetics. After treatment, the adsorbents can be easily separated from the solution in the presence of an external magnetic field and are reused for nine cycles after acid treatment with the minimal loss of adsorption efficiency.


Asunto(s)
Cromo , Nanopartículas de Magnetita/química , Extractos Vegetales , Dióxido de Silicio/química , Contaminantes Químicos del Agua , Cromo/aislamiento & purificación , Cromo/metabolismo , Cynodon/química , Concentración de Iones de Hidrógeno , Murraya/química , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA