Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biomol Struct Dyn ; 40(1): 1-13, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32469279

RESUMEN

Coronavirus disease 2019 (COVID-19) initiated in December 2019 in Wuhan, China and became pandemic causing high fatality and disrupted normal life calling world almost to a halt. Causative agent is a novel coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/2019-nCoV). While new line of drug/vaccine development has been initiated world-wide, in the current scenario of high infected numbers, severity of the disease and high morbidity, repurposing of the existing drugs is heavily explored. Here, we used a homology-based structural model of transmembrane protease serine 2 (TMPRSS2), a cell surface receptor, required for entry of virus to the target host cell. Using the strengths of molecular docking and molecular dynamics simulations, we examined the binding potential of Withaferin-A (Wi-A), Withanone (Wi-N) and caffeic acid phenethyl ester to TPMRSS2 in comparison to its known inhibitor, Camostat mesylate. We found that both Wi-A and Wi-N could bind and stably interact at the catalytic site of TMPRSS2. Wi-N showed stronger interactions with TMPRSS2 catalytic residues than Wi-A and was also able to induce changes in its allosteric site. Furthermore, we investigated the effect of Wi-N on TMPRSS2 expression in MCF7 cells and found remarkable downregulation of TMPRSS2 mRNA in treated cells predicting dual action of Wi-N to block SARS-CoV-2 entry into the host cells. Since the natural compounds are easily available/affordable, they may even offer a timely therapeutic/preventive value for the management of SARS-CoV-2 pandemic. We also report that Wi-A/Wi-N content varies in different parts of Ashwagandha and warrants careful attention for their use.Communicated by Ramaswamy H. Sarma.


Asunto(s)
SARS-CoV-2 , Inhibidores de Serina Proteinasa/farmacología , Internalización del Virus/efectos de los fármacos , Witanólidos/farmacología , Sitios de Unión , COVID-19 , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Serina , Serina Endopeptidasas/genética , Desarrollo de Vacunas
2.
Biosci Rep ; 41(10)2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34647577

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a global health emergency. Although new vaccines have been generated and being implicated, discovery and application of novel preventive and control measures are warranted. We aimed to identify compounds that may possess the potential to either block the entry of virus to host cells or attenuate its replication upon infection. Using host cell surface receptor expression (angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2)) analysis as an assay, we earlier screened several synthetic and natural compounds and identified candidates that showed ability to down-regulate their expression. Here, we report experimental and computational analyses of two small molecules, Mortaparib and MortaparibPlus that were initially identified as dual novel inhibitors of mortalin and PARP-1, for their activity against SARS-CoV-2. In silico analyses showed that MortaparibPlus, but not Mortaparib, stably binds into the catalytic pocket of TMPRSS2. In vitro analysis of control and treated cells revealed that MortaparibPlus caused down-regulation of ACE2 and TMPRSS2; Mortaparib did not show any effect. Furthermore, computational analysis on SARS-CoV-2 main protease (Mpro) that also predicted the inhibitory activity of MortaparibPlus. However, cell-based antiviral drug screening assay showed 30-60% viral inhibition in cells treated with non-toxic doses of either MortaparibPlus or Mortaparib. The data suggest that these two closely related compounds possess multimodal anti-COVID-19 activities. Whereas MortaparibPlus works through direct interactions/effects on the host cell surface receptors (ACE2 and TMPRSS2) and the virus protein (Mpro), Mortaparib involves independent mechanisms, elucidation of which warrants further studies.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Biología Computacional/métodos , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/inmunología , COVID-19/inmunología , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Humanos , Proteínas Mitocondriales/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , SARS-CoV-2/inmunología , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos
3.
Int J Biol Macromol ; 184: 297-312, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34118289

RESUMEN

COVID-19 caused by SARS-CoV-2 corona virus has become a global pandemic. In the absence of drugs and vaccine, and premises of time, efforts and cost required for their development, natural resources such as herbs are anticipated to provide some help and may also offer a promising resource for drug development. Here, we have investigated the therapeutic prospective of Ashwagandha for the COVID-19 pandemic. Nine withanolides were tested in silico for their potential to target and inhibit (i) cell surface receptor protein (TMPRSS2) that is required for entry of virus to host cells and (ii) viral protein (the main protease Mpro) that is essential for virus replication. We report that the withanolides possess capacity to inhibit the activity of TMPRSS2 and Mpro. Furthermore, withanolide-treated cells showed downregulation of TMPRSS2 expression and inhibition of SARS-CoV-2 replication in vitro, suggesting that Ashwagandha may provide a useful resource for COVID-19 treatment.


Asunto(s)
Antivirales/farmacología , Extractos Vegetales/química , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Witanólidos/farmacología , Células A549 , Antivirales/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Regulación hacia Abajo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/química , Proteínas de la Matriz Viral/química , Internalización del Virus/efectos de los fármacos , Witanólidos/química
4.
J Exp Clin Cancer Res ; 38(1): 103, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808373

RESUMEN

BACKGROUND: Tumor suppressor p53 protein is frequently mutated in a large majority of cancers. These mutations induce local or global changes in protein structure thereby affecting its binding to DNA. The structural differences between the wild type and mutant p53 thus provide an opportunity to selectively target mutated p53 harboring cancer cells. Restoration of wild type p53 activity in mutants using small molecules that can revert the structural changes have been considered for cancer therapeutics. METHODS: We used bioinformatics and molecular docking tools to investigate the structural changes between the wild type and mutant p53 proteins (p53V143A, p53R249S, p53R273H and p53Y220C) and explored the therapeutic potential of Withaferin A and Withanone for restoration of wild type p53 function in cancer cells. Cancer cells harboring the specific mutant p53 proteins were used for molecular assays to determine the mutant or wild type p53 functions. RESULTS: We found that p53V143A mutation does not show any significant structural changes and was also refractory to the binding of withanolides. p53R249S mutation critically disturbed the H-bond network and destabilized the DNA binding site. However, withanolides did not show any selective binding to either this mutant or other similar variants. p53Y220C mutation created a cavity near the site of mutation with local loss of hydrophobicity and water network, leading to functionally inactive conformation. Mutated structure could accommodate withanolides suggesting their conformational selectivity to target p53Y220C mutant. Using human cell lines containing specific p53 mutant proteins, we demonstrated that Withaferin A, Withanone and the extract rich in these withanolides caused restoration of wild type p53 function in mutant p53Y220C cells. This was associated with induction of p21WAF-1-mediated growth arrest/apoptosis. CONCLUSION: The study suggested that withanolides may serve as highly potent anticancer compounds for treatment of cancers harboring a p53Y220C mutation.


Asunto(s)
Antineoplásicos/farmacología , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Biología Computacional , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Proteína p53 Supresora de Tumor/efectos de los fármacos , Witanólidos/farmacología
5.
Biomed Pharmacother ; 71: 146-52, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25960230

RESUMEN

Alzheimer's disease is a neurological disorder in which the patient suffers from memory loss and impaired cognitive abilities. Though the main cause of the disease is not yet known, depletion of neurotransmitter at synaptic junctions, accumulation of insoluble beta amyloid plaques and neurofibrillary tangles are the main pathologies associated with it. The FDA approved drugs for alzheimer's belong to the category of acetylcholinesterase inhibitors. But most of the drugs have been observed to be associated with adverse side effects. In this study, we have developed a pharmacophore (responsible for interaction with acetylcholinesterase active site) based on the already existing drugs and drug candidates. This pharmacophore was used to search for novel AChE inhibitors with altogether different chemical scaffold using high throughput virtual screening and docking studies. Finally, we have reported two compounds, OPA and OMT, which possess high affinity for catalytic site of AChE enzyme and thus, can be considered as potential AChE inhibitors for the symptomatic treatment of Alzheimer's.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/uso terapéutico , Simulación del Acoplamiento Molecular , Enfermedad de Alzheimer/enzimología , Aminoácidos/química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Bases de Datos de Compuestos Químicos , Evaluación Preclínica de Medicamentos , Humanos , Enlace de Hidrógeno , Ligandos , Interfaz Usuario-Computador
6.
Biochem Biophys Res Commun ; 443(3): 1054-9, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24365147

RESUMEN

Alzheimer's is a neurodegenerative disorder resulting in memory loss and decline in cognitive abilities. Accumulation of extracellular beta amyloidal plaques is one of the major pathology associated with this disease. ß-Secretase or BACE-1 performs the initial and rate limiting step of amyloidic pathway in which 37-43 amino acid long peptides are generated which aggregate to form plaques. Inhibition of this enzyme offers a viable prospect to check the growth of these plaques. Numerous efforts have been made in recent years for the generation of BACE-1 inhibitors but many of them failed during the preclinical or clinical trials due to drug related or drug induced toxicity. In the present work, we have used computational methods to screen a large dataset of natural compounds to search for small molecules having BACE-1 inhibitory activity with low toxicity to normal cells. Molecular dynamics simulations were performed to analyze molecular interactions between the screened compounds and the active residues of the enzyme. Herein, we report two natural compounds of inhibitory nature active against ß-secretase enzyme of amyloidic pathway and are potent lead molecules against Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Productos Biológicos/farmacología , Inhibidores Enzimáticos/farmacología , Placa Amiloide/enzimología , Placa Amiloide/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Sitios de Unión , Biocatálisis/efectos de los fármacos , Productos Biológicos/química , Bases de Datos de Compuestos Químicos , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Humanos , Enlace de Hidrógeno/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Ligandos , Simulación de Dinámica Molecular , Reproducibilidad de los Resultados , Interfaz Usuario-Computador
7.
Comb Chem High Throughput Screen ; 17(2): 124-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24090103

RESUMEN

Insomnia is one of the most common clinical problems being faced by people all over the world. It adversely affects the routine life of these patients giving rise to even other health issues like hypertension, diabetes, obesity, depression, heart attack, and stroke. Orexin receptor-1 (OX1R), a noteworthy drug target, when inhibited can promote sleepiness in people suffering from such conditions. OX1R is a G-protein coupled receptor which is conserved throughout the mammalian species and is located primarily in hypothalamus and locus coeruleus. The present study aims at identifying potent natural-origin inhibitors of OX1R capable of affecting the arousal and sleep pattern. In the present work, we have screened a large dataset of natural compounds against OX1R using high throughput screening and high precision docking approaches. Molecular dynamics simulations were carried out to study the dynamical behavior of the top scoring compound. We also provided mechanistic insights into the binding mode of action of this compound. The study provides evidence for consideration of this natural molecule as prospective lead in treatment of insomnia.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacología , Antagonistas de los Receptores de Orexina , Receptores de Orexina/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptores de Orexina/química , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA