RESUMEN
Background: This study investigates the effect of organic and inorganic supplements on the reduction of ammonia (NH3) volatilization, improvement in nitrogen use efficiency (NUE), and wheat yield. Methods: A field experiment was conducted following a randomized block design with 10 treatments i.e., T1-without nitrogen (control), T2-recommended dose of nitrogen (RDN), T3-(N-(n-butyl) thiophosphoric triamide) (NBPT @ 0.5% w/w of RDN), T4-hydroquinone (HQ @ 0.3% w/w of RDN), T5-calcium carbide (CaC2 @ 1% w/w of RDN), T6-vesicular arbuscular mycorrhiza (VAM @ 10 kg ha-1), T7-(azotobacter @ 50 g kg-1 seeds), T8-(garlic powder @ 0.8% w/w of RDN), T9-(linseed oil @ 0.06% w/w of RDN), T10-(pongamia oil @ 0.06% w/w of RDN). Results: The highest NH3 volatilization losses were observed in T2 at about 20.4 kg ha-1 per season. Significant reduction in NH3 volatilization losses were observed in T3 by 40%, T4 by 27%, and T8 by 17% when compared to the control treatment. Soil urease activity was found to be decreased in plots receiving amendments, T3, T4, and T5. The highest grain yield was observed in the T7 treated plot with 5.09 t ha-1, and straw yield of 9.44 t ha-1 in T4. Conclusion: The shifting towards organic amendments is a feasible option to reduce NH3 volatilization from wheat cultivation and improves NUE.
Asunto(s)
Fertilizantes , Triticum , Agricultura , Amoníaco , Fertilizantes/análisis , Nitrógeno , Triticum/crecimiento & desarrollo , VolatilizaciónRESUMEN
Photosynthesis, crop health and dry matter partitioning are among the most important factors influencing crop productivity and quality. Identifying variation in these parameters may help discover the plausible causes for crop productivity differences under various management practices and cropping systems. Thus, a 2-year (2019-2020) study was undertaken to investigate how far the integrated crop management (ICM) modules and cropping systems affect maize physiology, photosynthetic characteristics, crop vigour and productivity in a holistic manner. The treatments included nine main-plot ICM treatments [ICM1 to ICM4 - conventional tillage (CT)-based; ICM5 to ICM8 - conservation agriculture (CA)-based; ICM9 - organic agriculture (OA)-based] and two cropping systems, viz., maize-wheat and maize + blackgram-wheat in subplots. The CA-based ICM module, ICM7 resulted in significant (p < 0.05) improvements in the physiological parameters, viz., photosynthetic rate (42.56 µ mol CO2 m-2 sec-1), transpiration rate (9.88 m mol H2O m-2 sec-1) and net assimilation rate (NAR) (2.81 mg cm-2 day-1), crop vigour [NDVI (0.78), chlorophyll content (53.0)], dry matter partitioning toward grain and finally increased maize crop productivity (6.66 t ha-1) by 13.4-14.2 and 27.3-28.0% over CT- and OA-based modules. For maize equivalent grain yield (MEGY), the ICM modules followed the trend as ICM7 > ICM8 > ICM5 > ICM6 > ICM3 > ICM4 > ICM1 > ICM2 > ICM9. Multivariate and PCA analyses also revealed a positive correlation between physiological parameters, barring NAR and both grain and stover yields. Our study proposes an explanation for improved productivity of blackgram-intercropped maize under CA-based ICM management through significant improvements in physiological and photosynthetic characteristics and crop vigour. Overall, the CA-based ICM module ICM7 coupled with the maize + blackgram intercropping system could be suggested for wider adoption to enhance the maize production in semiarid regions of India and similar agroecologies across the globe.