Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Can J Physiol Pharmacol ; 87(4): 252-65, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19370079

RESUMEN

Comprehensive management of patients with chronic ischemic disease is a critically important component of clinical practice. Cardiac myocytes have the potential to adapt to limited flow conditions by adjusting contractile function, reducing metabolism, conserving resources, and preserving myocardial integrity to cope with an oxygen and (or) nutrition shortage. A prime metabolic feature of cardiac myocytes affected by chronic ischemia is the return to a fetal gene pattern with predominance of carbohydrates as the substrate for energy. Structural adaptation with multiple intracellular changes is part of the remodeling process in hibernating myocardium. Transmural heterogeneity, which defines the pattern of injury in ventricular cardiomyocytes and the response to chronic ischemia, is a multifactorial process originating from functional, metabolic, and flow differences in subendocardial and subepicardial regions. Autophagy is typically activated in hibernating myocardium and has been identified as a prosurvival mechanism. Chronic ischemia is associated with changes in the number, size, and distribution of gap junctions and may give rise to conduction disturbances and arrhythmogenesis. Differentiation between viable and nonviable myocardium by assessing sensitivity of inotropic reserve is a crucial diagnostic tool that is correlated with the prognosis and outcome for improved contractility after restoration of blood perfusion in afflicted myocardium.Reliable and accurate diagnosis of ischemic, scar, and viable tissues is critical for recover strategies. Although early surgical reinstitution of blood flow is most effective in restoring physiologic function of the hibernating myocardium, several new approaches offer promising alternatives. Among others, vascular endothelial growth factor and fibroblast growth factor-2 (FGF-2), especially its lo-FGF-2 isoform, have been shown to be effective in rapid neovascularization. Substances such as statins, resveratrol, some hormones, and omega-3 fatty acids can improve recovery effect in chronically underperfused hearts. For patients with drug-refractory ischemia, intramyocardial transplantation of stem cells into predefined areas of the heart can enhance vascularization and have beneficial effects on cardiac function. This review of ischemic injury, its heterogeneity, accurate diagnosis, and newer methods of treatment, shows there is much information and tremendous hope for better management of patients with coronary heart disease.


Asunto(s)
Aturdimiento Miocárdico/fisiopatología , Animales , Calcio/metabolismo , Humanos , Aturdimiento Miocárdico/diagnóstico , Aturdimiento Miocárdico/patología , Aturdimiento Miocárdico/terapia , Miocitos Cardíacos/patología , Neovascularización Fisiológica , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA