Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Rev ; 75(5): 885-958, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37164640

RESUMEN

The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Alucinógenos , Humanos , Niño , Endocannabinoides/metabolismo , Cannabidiol/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabinoides/metabolismo , Dronabinol , Cannabis/química , Cannabis/metabolismo , Proteínas Portadoras , Agonistas de Receptores de Cannabinoides
2.
Mol Metab ; 72: 101713, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977433

RESUMEN

OBJECTIVE: Orexin-A (OX-A) is a neuropeptide produced selectively by neurons of the lateral hypothalamus. It exerts powerful control over brain function and physiology by regulating energy homeostasis and complex behaviors linked to arousal. Under conditions of chronic or acute brain leptin signaling deficiency, such as in obesity or short-term food deprivation, respectively, OX-A neurons become hyperactive and promote hyperarousal and food seeking. However, this leptin-dependent mechanism is still mostly unexplored. The endocannabinoid 2-arachidonoyl-glycerol (2-AG) is known to be implicated in food consumption by promoting hyperphagia and obesity, and we and others demonstrated that OX-A is a strong inducer of 2-AG biosynthesis. Here, we investigated the hypothesis that, under acute (6 h fasting in wt mice) or chronic (in ob/ob mice) hypothalamic leptin signaling reduction, OX-A-induced enhancement of 2-AG levels leads to the production of the 2-AG-derived 2-arachidonoyl-sn-glycerol-3-phosphate (2-AGP), a bioactive lipid belonging to the class of lysophosphatidic acids (LPAs), which then regulates hypothalamic synaptic plasticity by disassembling α-MSH anorexigenic inputs via GSK-3ß-mediated Tau phosphorylation, ultimately affecting food intake. METHODS: We combined cell-type-specific morphological (CLEM and confocal microscopy), biochemical, pharmacological, and electrophysiological techniques to dissect the leptin- and OX-A/2-AGP-mediated molecular pathways regulating GSK-3ß-controlled pT231-Tau production at POMC neurons of obese ob/ob and wild-type (wt) lean littermate mice and in an in vitro model of POMC neurons such as mHypoN41 neurons (N41). RESULTS: 2-AGP is overproduced in the hypothalamus of obese leptin-deficient, or lean 6 h food-deprived mice, and promotes food intake by reducing α-MSH-expressing synaptic inputs to OX-A neurons via lysophosphatidic acid type-1 receptor (LPA1-R) activation, and pT231-Tau accumulation in α-MSH projections. This effect is due to the activation of the Pyk2-mediated pTyr216-GSK3ß pathway and contributes to further elevating OX-A release in obesity. Accordingly, we found a strong correlation between OX-A and 2-AGP levels in the serum of obese mice and of human subjects. CONCLUSIONS: Hypothalamic feeding pathways are endowed with 2-AGP-mediated synaptic plasticity according to their inherent functional activities and the necessity to adapt to changes in the nutritional status. These findings reveal a new molecular pathway involved in energy homeostasis regulation, which could be targeted to treat obesity and related disturbances.


Asunto(s)
Endocannabinoides , Leptina , Ratones , Humanos , Animales , Orexinas/metabolismo , Leptina/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Endocannabinoides/metabolismo , alfa-MSH/metabolismo , Proopiomelanocortina/metabolismo , Hipotálamo/metabolismo , Obesidad/metabolismo , Lisofosfolípidos/metabolismo , Ratones Endogámicos
3.
Function (Oxf) ; 4(2): zqac069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778746

RESUMEN

We compared endogenous ω-3 PUFA production to supplementation for improving obesity-related metabolic dysfunction. Fat-1 transgenic mice, who endogenously convert exogenous ω-6 to ω-3 PUFA, and wild-type littermates were fed a high-fat diet and a daily dose of either ω-3 or ω-6 PUFA-rich oil for 12 wk. The endogenous ω-3 PUFA production improved glucose intolerance and insulin resistance but not hepatic steatosis. Conversely, ω-3 PUFA supplementation fully prevented hepatic steatosis but failed to improve insulin resistance. Both models increased hepatic levels of ω-3 PUFA-containing 2-monoacylglycerol and N-acylethanolamine congeners, and reduced levels of ω-6 PUFA-derived endocannabinoids with ω-3 PUFA supplementation being more efficacious. Reduced hepatic lipid accumulation associated with the endocannabinoidome metabolites EPEA and DHEA, which was causally demonstrated by lower lipid accumulation in oleic acid-treated hepatic cells treated with these metabolites. While both models induced a significant fecal enrichment of the beneficial Allobaculum genus, mice supplemented with ω-3 PUFA displayed additional changes in the gut microbiota functions with a significant reduction of fecal levels of the proinflammatory molecules lipopolysaccharide and flagellin. Multiple-factor analysis identify that the metabolic improvements induced by ω-3 PUFAs were accompanied by a reduced production of the proinflammatory cytokine TNFα, and that ω-3 PUFA supplementation had a stronger effect on improving the hepatic fatty acid profile than endogenous ω-3 PUFA. While endogenous ω-3 PUFA production preferably improves glucose tolerance and insulin resistance, ω-3 PUFA intake appears to be required to elicit selective changes in hepatic endocannabinoidome signaling that are essential to alleviate high-fat diet-induced hepatic steatosis.


Asunto(s)
Ácidos Grasos Omega-3 , Hígado Graso , Resistencia a la Insulina , Ratones , Animales , Hígado Graso/tratamiento farmacológico , Ratones Transgénicos , Suplementos Dietéticos
4.
Pharmacol Res ; 189: 106683, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736415

RESUMEN

In spite of the huge advancements in both diagnosis and interventions, hormone refractory prostate cancer (HRPC) remains a major hurdle in prostate cancer (PCa). Metabolic reprogramming plays a key role in PCa oncogenesis and resistance. However, the dynamics between metabolism and oncogenesis are not fully understood. Here, we demonstrate that two multi-target natural products, cannabidiol (CBD) and cannabigerol (CBG), suppress HRPC development in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model by reprogramming metabolic and oncogenic signaling. Mechanistically, CBD increases glycolytic capacity and inhibits oxidative phosphorylation in enzalutamide-resistant HRPC cells. This action of CBD originates from its effect on metabolic plasticity via modulation of VDAC1 and hexokinase II (HKII) coupling on the outer mitochondrial membrane, which leads to strong shifts of mitochondrial functions and oncogenic signaling pathways. The effect of CBG on enzalutamide-resistant HRPC cells was less pronounced than CBD and only partially attributable to its action on mitochondria. However, when optimally combined, these two cannabinoids exhibited strong anti-tumor effects in TRAMP mice, even when these had become refractory to enzalutamide, thus pointing to their therapeutical potential against PCa.


Asunto(s)
Cannabidiol , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Cannabidiol/farmacología , Muerte Celular , Mitocondrias/metabolismo , Neoplasias de la Próstata/metabolismo , Fosforilación Oxidativa , Carcinogénesis/metabolismo , Hormonas/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo
5.
Front Immunol ; 13: 1028412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439185

RESUMEN

Dietary micronutrients act at the intestinal level, thereby influencing microbial communities, the host endocannabinoidome, and immune and anti-oxidative response. Selenium (Se) is a trace element with several health benefits. Indeed, Se plays an important role in the regulation of enzymes with antioxidative and anti-inflammatory activity as well as indicators of the level of oxidative stress, which, together with chronic low-grade inflammation, is associated to obesity. To understand how Se variations affect diet-related metabolic health, we fed female and male mice for 28 days with Se-depleted or Se-enriched diets combined with low- and high-fat/sucrose diets. We quantified the plasma and intestinal endocannabinoidome, profiled the gut microbiota, and measured intestinal gene expression related to the immune and the antioxidant responses in the intestinal microenvironment. Overall, we show that intestinal segment-specific microbiota alterations occur following high-fat or low-fat diets enriched or depleted in Se, concomitantly with modifications of circulating endocannabinoidome mediators and changes in cytokine and antioxidant enzyme expression. Specifically, Se enrichment was associated with increased circulating plasma levels of 2-docosahexaenoyl-glycerol (2-DHG), a mediator with putative beneficial actions on metabolism and inflammation. Others eCBome mediators also responded to the diets. Concomitantly, changes in gut microbiota were observed in Se-enriched diets following a high-fat diet, including an increase in the relative abundance of Peptostreptococcaceae and Lactobacillaceae. With respect to the intestinal immune response and anti-oxidative gene expression, we observed a decrease in the expression of proinflammatory genes Il1ß and Tnfα in high-fat Se-enriched diets in caecum, while in ileum an increase in the expression levels of the antioxidant gene Gpx4 was observed following Se depletion. The sex of the animal influenced the response to the diet of both the gut microbiota and endocannabinoid mediators. These results identify Se as a regulator of the gut microbiome and endocannabinoidome in conjunction with high-fat diet, and might be relevant to the development of new nutritional strategies to improve metabolic health and chronic low-grade inflammation associated to metabolic disorders.


Asunto(s)
Microbioma Gastrointestinal , Selenio , Ratones , Masculino , Femenino , Animales , Microbioma Gastrointestinal/fisiología , Selenio/farmacología , Antioxidantes , Dieta Alta en Grasa/efectos adversos , Inflamación
6.
Front Immunol ; 13: 882455, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238310

RESUMEN

Omega-3 fatty acids support cardiometabolic health and reduce chronic low-grade inflammation. These fatty acids may impart their health benefits partly by modulating the endocannabinoidome and the gut microbiome, both of which are key regulators of metabolism and the inflammatory response. Whole hemp seeds (Cannabis sativa) are of exceptional nutritional value, being rich in omega-3 fatty acids. We assessed the effects of dietary substitution (equivalent to about 2 tablespoons of seeds a day for humans) of whole hemp seeds in comparison with whole linseeds in a diet-induced obesity mouse model and determined their effects on obesity and the gut microbiome-endocannabinoidome axis. We show that whole hemp seed substitution did not affect weigh gain, adiposity, or food intake, whereas linseed substitution did, in association with higher fasting glucose levels, greater insulin release during an oral glucose tolerance test, and higher levels of liver triglycerides than controls. Furthermore, hemp seed substitution mitigated diet-induced obesity-associated increases in intestinal permeability and circulating PAI-1 levels, while having no effects on markers of inflammation in epididymal adipose tissue, which were, however, increased in mice fed linseeds. Both hemp seeds and linseeds were able to modify the expression of several endocannabinoidome genes and markedly increased the levels of several omega-3 fatty acid-derived endocannabinoidome bioactive lipids with previously suggested anti-inflammatory actions in a tissue specific manner, despite the relatively low level of seed substitution. While neither diet markedly modified the gut microbiome, mice on the hemp seed diet had higher abundance of Clostridiaceae 1 and Rikenellaceae than mice fed linseed or control diet, respectively. Thus, hemp seed-containing foods might represent a source of healthy fats that are not likely to exacerbate the metabolic consequences of obesogenic diets while producing intestinal permeability protective effects and some anti-inflammatory actions.


Asunto(s)
Cannabis , Ácidos Grasos Omega-3 , Lino , Insulinas , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos , Lino/metabolismo , Glucosa , Humanos , Inflamación , Ratones , Obesidad/metabolismo , Inhibidor 1 de Activador Plasminogénico , Semillas/metabolismo , Sacarosa , Triglicéridos/metabolismo
7.
Gut Microbes ; 14(1): 2120344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36109831

RESUMEN

Consumption of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provides multifaceted health benefits. Recent studies suggest that ω-3 PUFAs modulate the gut microbiota by enhancing health-promoting bacteria, such as the mucin specialist Akkermansia muciniphila. However, these prebiotic properties have been poorly investigated and direct effects on the gut microbiome have never been explored dynamically across gut regions and niches (lumen vs. mucus-associated microbiota). Thus, we studied the effects of 1 week EPA- and DHA-enriched ω-3 fish-oil supplementation on the composition and functionality of the human microbiome in a Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME®). Gut microbial communities derived from one individual harvested in two different seasons were tested in duplicate. Luminal and outer mucus-associated microbiota of the ileum, ascending, transverse and descending colons were cultivated over 28 d from fecal inoculates and supplemented with ω-3 PUFAs for the last 7 d. We show that ω-3 PUFA supplementation modulates the microbiota in a gut region- and niche-dependent fashion. The outer mucus-associated microbiota displayed a higher resilience than the luminal mucin habitat to ω-3 PUFAs, with a remarkable blooming of Akkermansia muciniphila in opposition to a decrease of Firmicutes-mucolytic bacteria. The ω-3 PUFAs also induced a gradual and significant depletion of non-mucolytic Clostridia members in luminal habitats. Finally, increased concentrations of the short chain fatty acids (SCFA) propionate in colon regions at the end of the supplementation was associated positively with the bloom of Akkermansia muciniphila and members of the Desulfovibrionia class.


Asunto(s)
Ácidos Grasos Omega-3 , Microbioma Gastrointestinal , Microbiota , Akkermansia , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Expectorantes/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Volátiles , Fermentación , Firmicutes , Humanos , Mucinas , Prebióticos , Propionatos/farmacología , Verrucomicrobia
8.
Lipids Health Dis ; 21(1): 9, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35027074

RESUMEN

The discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.


Asunto(s)
Endocannabinoides/metabolismo , Microbioma Gastrointestinal , Fenómenos Fisiológicos de la Nutrición , Obesidad/metabolismo , Animales , Endocannabinoides/fisiología , Microbioma Gastrointestinal/fisiología , Humanos , Fenómenos Fisiológicos de la Nutrición/fisiología , Obesidad/dietoterapia , Obesidad/etiología , Receptores de Cannabinoides/metabolismo
9.
Nutrients ; 13(12)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34959768

RESUMEN

The aggregation of alpha-synuclein protein (αSyn) is a hallmark of Parkinson's disease (PD). Considerable evidence suggests that PD involves an early aggregation of αSyn in the enteric nervous system (ENS), spreading to the brain. While it has previously been reported that omega-3 polyunsaturated fatty acids (ω-3 PUFA) acts as neuroprotective agents in the brain in murine models of PD, their effect in the ENS remains undefined. Here, we studied the effect of dietary supplementation with docosahexaenoic acid (DHA, an ω-3 PUFA), on the ENS, with a particular focus on enteric dopaminergic (DAergic) neurons. Thy1-αSyn mice, which overexpress human αSyn, were fed ad libitum with a control diet, a low ω-3 PUFA diet or a diet supplemented with microencapsulated DHA and then compared with wild-type littermates. Our data indicate that Thy1-αSyn mice showed a lower density of enteric dopaminergic neurons compared with non-transgenic animals. This decrease was prevented by dietary DHA. Although we found that DHA reduced microgliosis in the striatum, we did not observe any evidence of peripheral inflammation. However, we showed that dietary intake of DHA promoted a build-up of ω-3 PUFA-derived endocannabinoid (eCB)-like mediators in plasma and an increase in glucagon-like peptide-1 (GLP-1) and the redox regulator, Nrf2 in the ENS. Taken together, our results suggest that DHA exerts neuroprotection of enteric DAergic neurons in the Thy1-αSyn mice, possibly through alterations in eCB-like mediators, GLP-1 and Nrf2.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/farmacología , Sistema Nervioso Entérico/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Sinucleinopatías/tratamiento farmacológico , Animales , Dieta , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Ratones , Ratones Transgénicos , Antígenos Thy-1/metabolismo , alfa-Sinucleína/metabolismo
10.
J Nutr Biochem ; 96: 108782, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34038760

RESUMEN

Omega-3 (n-3) polyunsaturated fatty acids (PUFA) and the endocannabinoid system (ECS) modulate several functions through neurodevelopment including synaptic plasticity mechanisms. The interplay between n-3PUFA and the ECS during the early stages of development, however, is not fully understood. This study investigated the effects of maternal n-3PUFA supplementation (n-3Sup) or deficiency (n-3Def) on ECS and synaptic markers in postnatal offspring. Female rats were fed with a control, n-3Def, or n-3Sup diet from 15 days before mating and during pregnancy. The cerebral cortex and hippocampus of mothers and postnatal 1-2 days offspring were analyzed. In the mothers, a n-3 deficiency reduced CB1 receptor (CB1R) protein levels in the cortex and increased CB2 receptor (CB2R) in both cortex and hippocampus. In neonates, a maternal n-3 deficiency reduced the hippocampal CB1R amount while it increased CB2R. Additionally, total GFAP isoform expression was increased in both cortex and hippocampus in neonates of the n-3Def group. Otherwise, maternal n-3 supplementation increased the levels of n-3-derived endocannabinoids, DHEA and EPEA, in the cortex and hippocampus and reduced 2-arachidonoyl-glycerol (2-AG) concentrations in the cortex of the offspring. Furthermore, maternal n-3 supplementation also increased PKA phosphorylation in the cortex and ERK phosphorylation in the hippocampus. Synaptophysin immunocontent in both regions was also increased. In vitro assays showed that the increase of synaptophysin in the n-3Sup group was independent of CB1R activation. The findings show that variations in maternal dietary omega-3 PUFA levels may impact differently on the ECS and molecular markers in the cerebral cortex and hippocampus of the progeny.


Asunto(s)
Endocannabinoides/metabolismo , Ácidos Grasos Omega-3/metabolismo , Hipocampo/fisiología , Neocórtex/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Dieta , Femenino , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Ratas , Sinapsis/metabolismo
11.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540826

RESUMEN

Toll-like receptors (TLRs) are key receptors through which infectious and non-infectious challenges act with consequent activation of the inflammatory cascade that plays a critical function in various acute and chronic diseases, behaving as amplification and chronicization factors of the inflammatory response. Previous studies have shown that synthetic analogues of lipid A based on glucosamine with few chains of unsaturated and saturated fatty acids, bind MD-2 and inhibit TLR4 receptors. These synthetic compounds showed antagonistic activity against TLR4 activation in vitro by LPS, but little or no activity in vivo. This study aimed to show the potential use of N-palmitoyl-D-glucosamine (PGA), a bacterial molecule with structural similarity to the lipid A component of LPS, which could be useful for preventing LPS-induced tissue damage or even peripheral neuropathies. Molecular docking and molecular dynamics simulations showed that PGA stably binds MD-2 with a MD-2/(PGA)3 stoichiometry. Treatment with PGA resulted in the following effects: (i) it prevented the NF-kB activation in LPS stimulated RAW264.7 cells; (ii) it decreased LPS-induced keratitis and corneal pro-inflammatory cytokines, whilst increasing anti-inflammatory cytokines; (iii) it normalized LPS-induced miR-20a-5p and miR-106a-5p upregulation and increased miR-27a-3p levels in the inflamed corneas; (iv) it decreased allodynia in peripheral neuropathy induced by oxaliplatin or formalin, but not following spared nerve injury of the sciatic nerve (SNI); (v) it prevented the formalin- or oxaliplatin-induced myelino-axonal degeneration of sciatic nerve. SIGNIFICANCE STATEMENT We report that PGA acts as a TLR4 antagonist and this may be the basis of its potent anti-inflammatory activity. Being unique because of its potency and stability, as compared to other similar congeners, PGA can represent a tool for the optimization of new TLR4 modulating drugs directed against the cytokine storm and the chronization of inflammation.


Asunto(s)
Analgésicos/uso terapéutico , Antiinflamatorios/uso terapéutico , Glucolípidos/uso terapéutico , Hiperalgesia/prevención & control , Queratitis/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Receptor Toll-Like 4/antagonistas & inhibidores , Analgésicos/farmacología , Animales , Antiinflamatorios/farmacología , Señalización del Calcio/efectos de los fármacos , Citocinas/metabolismo , Evaluación Preclínica de Medicamentos , Glucolípidos/farmacología , Células HEK293 , Humanos , Hiperalgesia/etiología , Queratitis/inducido químicamente , Queratitis/patología , Lipopolisacáridos/toxicidad , Antígeno 96 de los Linfocitos/metabolismo , Masculino , Ratones , MicroARNs/genética , Modelos Moleculares , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Conformación Proteica , Células RAW 264.7 , Distribución Aleatoria , Nervio Ciático/lesiones , Canal Catiónico TRPA1/metabolismo
12.
Phytother Res ; 35(1): 517-529, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32996187

RESUMEN

Fish oil (FO) and phytocannabinoids have received considerable attention for their intestinal anti-inflammatory effects. We investigated whether the combination of FO with cannabigerol (CBG) and cannabidiol (CBD) or a combination of all three treatments results in a more pronounced intestinal antiinflammatory action compared to the effects achieved separately. Colitis was induced in mice by 2,4-dinitrobenzenesulfonic acid (DNBS). CBD and CBG levels were detected and quantified by liquid chromatography coupled with time of flight mass spectrometry and ion trap mass spectrometry (LC-MS-IT-TOF). Endocannabinoids and related mediators were assessed by LC-MS. DNBS increased colon weight/colon length ratio, myeloperoxidase activity, interleukin-1ß, and intestinal permeability. CBG, but not CBD, given by oral gavage, ameliorated DNBS-induced colonic inflammation. FO pretreatment (at the inactive dose) increased the antiinflammatory action of CBG and rendered oral CBD effective while reducing endocannabinoid levels. Furthermore, the combination of FO, CBD, and a per se inactive dose of CBG resulted in intestinal anti-inflammatory effects. Finally, FO did not alter phytocannabinoid levels in the serum and in the colon. By highlighting the apparent additivity between phytocannabinoids and FO, our preclinical data support a novel strategy of combining these substances for the potential development of a treatment of inflammatory bowel disease.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cannabidiol/uso terapéutico , Cannabinoides/uso terapéutico , Colitis/tratamiento farmacológico , Aceites de Pescado/uso terapéutico , Animales , Antioxidantes/uso terapéutico , Colitis/inducido químicamente , Inflamación/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos ICR
13.
JCI Insight ; 5(23)2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33141759

RESUMEN

Ongoing societal changes in views on the medical and recreational roles of cannabis increased the use of concentrated plant extracts with a Δ9-tetrahydrocannabinol (THC) content of more than 90%. Even though prenatal THC exposure is widely considered adverse for neuronal development, equivalent experimental data for young age cohorts are largely lacking. Here, we administered plant-derived THC (1 or 5 mg/kg) to mice daily during P5-P16 and P5-P35 and monitored its effects on hippocampal neuronal survival and specification by high-resolution imaging and iTRAQ proteomics, respectively. We found that THC indiscriminately affects pyramidal cells and both cannabinoid receptor 1+ (CB1R)+ and CB1R- interneurons by P16. THC particularly disrupted the expression of mitochondrial proteins (complexes I-IV), a change that had persisted even 4 months after the end of drug exposure. This was reflected by a THC-induced loss of membrane integrity occluding mitochondrial respiration and could be partially or completely rescued by pH stabilization, antioxidants, bypassed glycolysis, and targeting either mitochondrial soluble adenylyl cyclase or the mitochondrial voltage-dependent anion channel. Overall, THC exposure during infancy induces significant and long-lasting reorganization of neuronal circuits through mechanisms that, in large part, render cellular bioenergetics insufficient to sustain key developmental processes in otherwise healthy neurons.


Asunto(s)
Dronabinol/efectos adversos , Neurogénesis/efectos de los fármacos , Animales , Animales Recién Nacidos , Muerte Celular/efectos de los fármacos , Femenino , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos
14.
J Med Chem ; 63(13): 7369-7391, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32515588

RESUMEN

The hallmark of joint diseases, such as osteoarthritis (OA), is pain, originating from both inflammatory and neuropathic components, and compounds able to modulate the signal transduction pathways of the cannabinoid type-2 receptor (CB2R) can represent a helpful option in the treatment of OA. In this perspective, a set of 18 cannabinoid type-2 receptor (CB2R) ligands was developed based on an unprecedented structure. With the aim of improving the physicochemical properties of previously reported 4-hydroxy-2-quinolone-3-carboxamides, a structural optimization program led to the discovery of isosteric 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives. These new compounds are endowed with high affinity for the CB2R and moderate to good selectivity over the cannabinoid type-1 receptor (CB1R), associated with good physicochemical characteristics. As to the functional activity at the CB2R, compounds able to act either as agonists or as inverse agonists/antagonists were discovered. Among them, compound 51 emerged as a potent CB2R agonist able to reduce pain in rats carrying OA induced by injection of monoiodoacetic acid (MIA).


Asunto(s)
Antiasmáticos/farmacología , Condrocitos/efectos de los fármacos , Osteoartritis/tratamiento farmacológico , Receptor Cannabinoide CB2/metabolismo , 4-Quinolonas/química , Animales , Antiasmáticos/química , Células CHO , Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/farmacología , Condrocitos/metabolismo , Condrocitos/patología , Colforsina/farmacología , Cricetulus , Modelos Animales de Enfermedad , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ácido Yodoacético/toxicidad , Ligandos , Masculino , Ratones , Células 3T3 NIH , Osteoartritis/inducido químicamente , Ratas Wistar , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/antagonistas & inhibidores , Receptor Cannabinoide CB2/genética , Relación Estructura-Actividad , Caminata
15.
Pharmacol Res ; 156: 104764, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32205233

RESUMEN

In the sports domain, cannabis is prohibited by the World Anti-Doping Agency (WADA) across all sports in competition since 2004. The few studies on physical exercise and cannabis focused on the main compound i.e. Δ9-tetrahydrocannabinol. Cannabidiol (CBD) is another well-known phytocannabinoid present in dried or heated preparations of cannabis. Unlike Δ9-tetrahydrocannabinol, CBD is non-intoxicating but exhibits pharmacological properties that are interesting for medical use. The worldwide regulatory status of CBD is complex and this compound is still a controlled substance in many countries. Interestingly, however, the World Anti-Doping Agency removed CBD from the list of prohibited substances - in or out of competition - since 2018. This recent decision by the WADA leaves the door open for CBD use by athletes. In the present opinion article we wish to expose the different CBD properties discovered in preclinical studies that could be further tested in the sport domain to ascertain its utility. Preclinical studies suggest that CBD could be useful to athletes due to its anti-inflammatory, analgesic, anxiolytic, neuroprotective properties and its influence on the sleep-wake cycle. Unfortunately, almost no clinical data are available on CBD in the context of exercise, which makes its use in this context still premature.


Asunto(s)
Cannabidiol/uso terapéutico , Doping en los Deportes , Sustancias para Mejorar el Rendimiento/uso terapéutico , Analgésicos/uso terapéutico , Animales , Ansiolíticos/uso terapéutico , Antiinflamatorios/uso terapéutico , Cannabidiol/efectos adversos , Humanos , Fármacos Neuroprotectores/uso terapéutico , Sustancias para Mejorar el Rendimiento/efectos adversos , Fármacos Inductores del Sueño/uso terapéutico
16.
Naunyn Schmiedebergs Arch Pharmacol ; 393(8): 1357-1364, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32002574

RESUMEN

TRPV1 are involved in the control of the gastrointestinal (GI) functions and pain sensation. Their activation induces pain but it is followed by desensitization, which in turn causes analgesia. The studies from the last two decades indicate that TRPV1 are involved in visceral hypersensitivity in the GI tract and pathogenesis of irritable bowel syndrome (IBS). Therefore, the aim of this study is to assess the action of fast desensitizing agonist of TRPV1, palvanil (N-palmitoyl-vanillamine), in the murine GI tract and on nociception to evaluate its potential application in the therapy of IBS. The effect of palvanil on smooth muscle contractility was evaluated using organ baths. The impact of palvanil on intestinal secretion was assessed in Ussing chambers. In vivo, the action of palvanil (0.1-1 mg/kg) was assessed in whole GI transit, fecal pellet output, and colonic bead expulsion tests. The antinociceptive potency of palvanil was tested in the mustard oil-induced pain test. Palvanil inhibited colonic contractions (evoked by electrical field stimulation, EFS) and decreased the ion transport in the colon stimulated with forskolin. It did not affect secretion in experiments with veratridine. In vivo, palvanil prolonged whole GI transit at all doses tested. At the lower dose tested, it accelerated colonic motility during first 60 min following injection. By contrast, at the dose of 1 mg/kg, colonic motility was inhibited. Palvanil induced antinociceptive action at all tested doses in mustard oil-induced pain test. TRPV1 fast-desensitizing compounds, i.e., palvanil, may be promising agents in the therapy of IBS since it modulates intestinal motility and reduces visceral pain.


Asunto(s)
Dolor Abdominal/prevención & control , Analgésicos/farmacología , Capsaicina/análogos & derivados , Colon/efectos de los fármacos , Motilidad Gastrointestinal/efectos de los fármacos , Síndrome del Colon Irritable/tratamiento farmacológico , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/efectos de los fármacos , Dolor Abdominal/inducido químicamente , Dolor Abdominal/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Capsaicina/farmacología , Colon/metabolismo , Colon/fisiopatología , Modelos Animales de Enfermedad , Técnicas In Vitro , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/fisiopatología , Masculino , Ratones Endogámicos BALB C , Planta de la Mostaza , Aceites de Plantas , Factores de Tiempo
17.
Psychopharmacology (Berl) ; 237(2): 375-384, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31712968

RESUMEN

RATIONALE: Acute naloxone-precipitated morphine withdrawal (MWD) produces a conditioned place aversion (CPA) in rats even after one or two exposures to high-dose (20 mg/kg, sc) morphine followed 24-h later by naloxone (1 mg/kg, sc). However, the somatic withdrawal reactions produced by acute naloxone-precipitated MWD in rats have not been investigated. A recently discovered fatty acid amide, N-oleoylglycine (OlGly), which has been suggested to act as a fatty acid amide hydrolase (FAAH) inhibitor and as a peroxisome proliferator-activated receptor alpha (PPARα) agonist, was previously shown to interfere with a naloxone-precipitated MWD-induced CPA in rats. OBJECTIVES: The aims of these studies were to examine the somatic withdrawal responses produced by acute naloxone-precipitated MWD and determine whether OlGly can also interfere with these responses. RESULTS: Here, we report that following two exposures to morphine (20 mg/kg, sc) each followed by naloxone (1 mg/kg, sc) 24 h later, rats display nausea-like somatic reactions of lying flattened on belly, abdominal contractions and diarrhea, and display increased mouthing movements and loss of body weight. OlGly (5 mg/kg, ip) interfered with naloxone-precipitated MWD-induced abdominal contractions, lying on belly, diarrhea and mouthing movements in male Sprague-Dawley rats, by both a cannabinoid 1 (CB1) and a PPARα mechanism of action. Since these withdrawal reactions are symptomatic of nausea, we evaluated the potential of OlGly to interfere with lithium chloride (LiCl)-induced and MWD-induced conditioned gaping in rats, a selective measure of nausea; the suppression of MWD-induced gaping reactions by OlGly was both CB1 and PPARα mediated. CONCLUSION: These results suggest that the aversive effects of acute naloxone-precipitated MWD reflect nausea, which is suppressed by OlGly.


Asunto(s)
Glicina/análogos & derivados , Morfina/efectos adversos , Naloxona/toxicidad , Antagonistas de Narcóticos/toxicidad , Náusea/tratamiento farmacológico , Ácidos Oléicos/uso terapéutico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Animales , Femenino , Glicina/farmacología , Glicina/uso terapéutico , Masculino , Síntomas sin Explicación Médica , Dependencia de Morfina/tratamiento farmacológico , Dependencia de Morfina/fisiopatología , Náusea/inducido químicamente , Náusea/fisiopatología , Ácidos Oléicos/farmacología , Ratas , Ratas Sprague-Dawley , Musarañas , Síndrome de Abstinencia a Sustancias/etiología , Síndrome de Abstinencia a Sustancias/fisiopatología
18.
Mol Psychiatry ; 25(1): 22-36, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31735910

RESUMEN

The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.


Asunto(s)
Encéfalo/efectos de los fármacos , Dieta Occidental/efectos adversos , Epigénesis Genética/efectos de los fármacos , Animales , Ansiedad , Encéfalo/metabolismo , Metilación de ADN/efectos de los fármacos , Depresión , Dieta , Suplementos Dietéticos , Endocannabinoides/metabolismo , Epigénesis Genética/genética , Epigenómica/métodos , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Embarazo , Receptor Cannabinoide CB1/efectos de los fármacos
19.
Curr Diab Rep ; 19(11): 117, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31686231

RESUMEN

PURPOSE OF REVIEW: The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis, their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome (eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease. RECENT FINDINGS: As with the eCB system, many eCBome members regulate several physiological processes, including energy intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes (T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D. The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling system a potential source of many potential therapeutics for the treatments for T2D.


Asunto(s)
Cannabis , Diabetes Mellitus Tipo 2 , Endocannabinoides/farmacología , Receptores de Cannabinoides , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa/metabolismo , Humanos , Ligandos , Metabolismo de los Lípidos , Receptores de Cannabinoides/efectos de los fármacos , Receptores de Cannabinoides/fisiología
20.
Br J Pharmacol ; 176(10): 1568-1584, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30074247

RESUMEN

BACKGROUND AND PURPOSE: Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, results in chronic inflammation and irreversible skeletal muscle degeneration. Moreover, the associated impairment of autophagy greatly contributes to the aggravation of muscle damage. We explored the possibility of using non-euphoric compounds present in Cannabis sativa, cannabidiol (CBD), cannabidivarin (CBDV) and tetrahydrocannabidivarin (THCV), to reduce inflammation, restore functional autophagy and positively enhance muscle function in vivo. EXPERIMENTAL APPROACH: Using quantitative PCR, western blots and [Ca2+ ]i measurements, we explored the effects of CBD and CBDV on the differentiation of both murine and human skeletal muscle cells as well as their potential interaction with TRP channels. Male dystrophic mdx mice were injected i.p. with CBD or CBDV at different stages of the disease. After treatment, locomotor tests and biochemical analyses were used to evaluate their effects on inflammation and autophagy. KEY RESULTS: CBD and CBDV promoted the differentiation of murine C2C12 myoblast cells into myotubes by increasing [Ca2+ ]i mostly via TRPV1 activation, an effect that undergoes rapid desensitization. In primary satellite cells and myoblasts isolated from healthy and/or DMD donors, not only CBD and CBDV but also THCV promoted myotube formation, in this case, mostly via TRPA1 activation. In mdx mice, CBD (60 mg·kg-1 ) and CBDV (60 mg·kg-1 ) prevented the loss of locomotor activity, reduced inflammation and restored autophagy. CONCLUSION AND IMPLICATIONS: We provide new insights into plant cannabinoid interactions with TRP channels in skeletal muscle, highlighting a potential opportunity for novel co-adjuvant therapies to prevent muscle degeneration in DMD patients. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.


Asunto(s)
Cannabidiol/farmacología , Cannabinoides/farmacología , Cannabis/química , Dronabinol/análogos & derivados , Músculo Esquelético/efectos de los fármacos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Mioblastos/efectos de los fármacos , Animales , Calcio/metabolismo , Cannabidiol/aislamiento & purificación , Cannabinoides/aislamiento & purificación , Diferenciación Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Dronabinol/aislamiento & purificación , Dronabinol/farmacología , Distrofina/genética , Endocannabinoides/metabolismo , Humanos , Masculino , Ratones , Fuerza Muscular/efectos de los fármacos , Fuerza Muscular/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Mioblastos/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA