Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Inorg Chem ; 27(3): 329-343, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247094

RESUMEN

Two ternary copper(II) complexes with 2,2'-biquinoline (BQ) and with sulfonamides: sulfamethazine (SMT) or sulfaquinoxaline (SDQ) whose formulae are Cu(SMT)(BQ)Cl and Cu(SDQ)(BQ)Cl·CH3OH, in what follows SMTCu and SDQCu, respectively, induced oxidative stress by increasing ROS level from 1.0 µM and the reduction potential of the couple GSSG/GSH2. The co-treatment with L-buthionine sulfoximine (BSO), which inhibits the production of GSH, enhanced the effect of copper complexes on tumor cell viability and on oxidative damage. Both complexes generated DNA strand breaks given by-at least partially-the oxidation of pyrimidine bases, which caused the arrest of the cell cycle in the G2/M phase. These phenomena triggered processes of apoptosis proven by activation of caspase 3 and externalization of phosphatidylserine and loss of cell integrity from 1.0 µM. The combination with BSO induced a marked increase in the apoptotic population. On the other hand, an improved cell proliferation effect was observed when combining SDQCu with a radiation dose of 2 Gy from 1.0 µM or with 6 Gy from 1.5 µM. Finally, studies in multicellular spheroids demonstrated that even though copper(II) complexes did not inhibit cell invasion in collagen gels up to 48 h of treatment at the higher concentrations, multicellular resistance outperformed several drugs currently used in cancer treatment. Overall, our results reveal an antitumor effect of both complexes in monolayer and multicellular spheroids and an improvement with the addition of BSO. However, only SDQCu was the best adjuvant of ionizing radiation treatment.


Asunto(s)
Cobre , Neoplasias Pulmonares , Apoptosis , Butionina Sulfoximina/farmacología , Cobre/química , Cobre/farmacología , Glutatión/metabolismo , Humanos , Pulmón , Neoplasias Pulmonares/tratamiento farmacológico , Quinolinas , Radiación Ionizante , Sulfonamidas/farmacología
2.
J Hazard Mater ; 177(1-3): 711-8, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20079968

RESUMEN

The aim of this study was to analyze the cytotoxicity and genotoxicity of titanium oxide (TiO(2)) and aluminium oxide (Al(2)O(3)) nanoparticles (NPs) on Chinese hamster ovary (CHO-K1) cells using neutral red (NR), mitochondrial activity (by MTT assay), sister chromatid exchange (SCE), micronucleus (MN) formation, and cell cycle kinetics techniques. Results showed a dose-related cytotoxic effect evidenced after 24h by changes in lysosomal and mitochondrial dehydrogenase activity. Interestingly, transmission electronic microscopy (TEM) showed the formation of perinuclear vesicles in CHO-K1 cells after treatment with both NPs during 24h but no NP was detected in the nuclei. Genotoxic effects were shown by MN frequencies which significantly increased at 0.5 and 1 microg/mL TiO(2) and 0.5-10 microg/mL Al(2)O(3). SCE frequencies were higher for cells treated with 1-5 microg/mL TiO(2). The absence of metaphases evidenced cytotoxicity for higher concentrations of TiO(2). No SCE induction was achieved after treatment with 1-25 microg/mL Al(2)O(3). In conclusion, findings showed cytotoxic and genotoxic effects of TiO(2) and Al(2)O(3) NPs on CHO-K1 cells. Possible causes of controversial reports are discussed further on.


Asunto(s)
Óxido de Aluminio/farmacología , Citotoxinas/farmacología , Mutágenos/farmacología , Titanio/farmacología , Óxido de Aluminio/toxicidad , Animales , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Nanopartículas/toxicidad , Titanio/toxicidad , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA