Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Sep Sci ; 47(1): e2300786, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234027

RESUMEN

Epimedium (EM) and Psoraleae Fructus (PF) are a traditional herb combination often used as a fixed form to treat osteoporosis disease in the clinic. However, the intricate interactions of this pair remain unknown. In our study, we undertook a comprehensive examination of their compatibility behaviors. Concurrently, a precise and sensitive quantitation method was successfully developed and validated using liquid chromatography-tandem mass spectrometry for the determination of 12 components. This method was applied in analyzing herbal extracts and biological samples (both in the portal vein and systemic plasma), which was also used to study the pharmacokinetics of the herb pair. The results indicated that the combination of EM and PF enhanced the dissolution of chemical components from PF in extracts, but it had a negligible influence on the contents of the components from EM. On the contrary, the in vivo exposure of the lowly exposed EM flavonoids significantly increased following the combination of EM and PF, whereas the highly exposed psoralen and isopsoralen were greatly reduced. These interactions might be crucial for the synergy and toxicity reduction of the herbal pair in disease treatment, which pave the way for further exploration into the clinical application and pharmacological mechanisms of EM and PF.


Asunto(s)
Medicamentos Herbarios Chinos , Epimedium , Ratas , Animales , Medicamentos Herbarios Chinos/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Administración Oral
2.
Molecules ; 28(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138590

RESUMEN

BS1801 is a selenium-containing drug candidate with potential for treating liver and lung fibrosis. To fully elucidate the biotransformation of BS1801 in animals and provide sufficient preclinical drug metabolism data for human mass balance study, the metabolism of BS1801 in rats was investigated. We used radiolabeling techniques to investigate the mass balance, tissue distribution, and metabolite identification of BS1801 in Sprague-Dawley/Long-Evans rats after a single oral dose of 100 mg/kg (100 µCi/kg) [14C]BS1801: 1. The mean recovery of radioactive substances in urine and feces was 93.39% within 168 h postdose, and feces were the main excretion route. 2. Additionally, less than 1.00% of the dose was recovered from either urine or bile. 3. BS1801-related components were widely distributed throughout the body. 4. Fifteen metabolites were identified in rat plasma, urine, feces, and bile, and BS1801 was detected only in feces. 5. BS1801-M484, the methylation product obtained via a N-Se bond reduction in BS1801, was the most abundant drug-related component in plasma. The main metabolic pathways of BS1801 were reduction, amide hydrolysis, oxidation, and methylation. Overall, BS1801 was distributed throughout the body, and excreted mainly as an intact BS1801 form through feces. No differences were observed between male and female rats in distribution, metabolism, and excretion of BS1801.


Asunto(s)
Selenio , Ratas , Masculino , Femenino , Humanos , Animales , Ratas Sprague-Dawley , Selenio/análisis , Ratas Long-Evans , Bilis/química , Hígado/metabolismo , Biotransformación , Heces/química , Administración Oral
3.
Life Sci ; 287: 120125, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34762904

RESUMEN

AIMS: 3-n-Butylphthalide (NBP) is widely used for the treatment of cerebral ischaemic stroke but can causeliver injury in clinical practice. This study aims to elucidate the underlying mechanisms and propose potential preventive strategies. MAIN METHODS: NBP and its four major metabolites, 3-hydroxy-NBP (3-OH-NBP), 10-hydroxy-NBP, 10-keto-NBP and NBP-11-oic acid, were synthesized and evaluated in primary human or rat hepatocytes (PHHs, PRHs). NBP-related substances or amino acid adducts were identified and semi-quantitated by ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). The target proteins and binding sites were identified by shotgun proteomics based on peptide mass fingerprinting coupled with tandem mass spectrometry and verified by molecular docking. KEY FINDINGS: The toxicity of NBP and its four major metabolites were compared in both PHHs and PRHs, and 3-OH-NBP was found to be the most toxic metabolite. 3-OH-NBP induced remarkable cell death and oxidative stresses in hepatocytes, which correlated well with the levels of glutathione and N-acetylcysteine adducts (3-GSH-NBP and 3-NAC-NBP) in cell supernatants. Additionally, 3-OH-NBP covalently conjugated with intracellular Cys, Lys and Ser, with preferable binding to Cys sites at Myh9 Cys1380, Prdx4 Cys53, Vdac2 Cys48 and Vdac3 Cys36. Furthermore, we found that CYP3A4 induction by rifampicin augmented NBP-induced cell toxicity and supplementing with GSH or NAC alleviated the oxidative stresses and reactive metabolites caused by 3-OH-NBP. SIGNIFICANCE: Our work suggests that glutathione depletion, mitochondrial injury and covalent protein modification are the main causes of NBP-induced hepatotoxicity, which may be prevented by exogenous GSH or NAC supplementation and avoiding concomitant use of CYP3A4 inducers.


Asunto(s)
Acetilcisteína/metabolismo , Benzofuranos/metabolismo , Benzofuranos/toxicidad , Glutatión/metabolismo , Hepatocitos/metabolismo , Animales , Sitios de Unión/fisiología , Células Cultivadas , Inductores del Citocromo P-450 CYP3A/metabolismo , Inductores del Citocromo P-450 CYP3A/toxicidad , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Humanos , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley
4.
Curr Drug Metab ; 22(11): 838-857, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34620061

RESUMEN

Metabolite identification plays a critical role in the phases during drug development. Drug metabolites can contribute to efficacy, toxicity, and drug-drug interaction. Thus, the correct identification of metabolites is essential to understand the behavior of drugs in humans. Drug administration authorities (e.g., FDA, EMA, and NMPA) emphasize evaluating the safety of human metabolites with exposure higher than 10% of the total drugrelated components. Many previous reviews have summarized the various methods, tools, and strategies for the appropriate and comprehensive identification of metabolites. In this review, we focus on summarizing the importance of identifying metabolites in the preclinical and clinical phases of drug development. Summarized scenarios include the role of metabolites in pharmacokinetics/pharmacodynamics (PK/PD) analysis, disproportional exposure of metabolites that contribute to drug toxicity, changes in metabolite exposure in renal-impaired patients, covalent tyrosine kinase inhibitors (anticancer drugs), and metabolite identification of drug candidates from natural medicines. This review is aimed to provide meaningful insight into the significant role of metabolite identification in drug development.


Asunto(s)
Desarrollo de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Animales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos
5.
AAPS J ; 18(2): 455-64, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26810398

RESUMEN

In 2014, FDU-PB-22 and FUB-PB-22, two novel synthetic cannabinoids, were detected in herbal blends in Japan, Russia, and Germany and were quickly added to their scheduled drugs list. Unfortunately, no human metabolism data are currently available, making it challenging to confirm their intake. The present study aims to identify appropriate analytical markers by investigating FDU-PB-22 and FUB-PB-22 metabolism in human hepatocytes and confirm the results in authentic urine specimens. For metabolic stability, 1 µM FDU-PB-22 and FUB-PB-22 was incubated with human liver microsomes for up to 1 h; for metabolite profiling, 10 µM was incubated with human hepatocytes for 3 h. Two authentic urine specimens from FDU-PB-22 and FUB-PB-22 positive cases were analyzed after ß-glucuronidase hydrolysis. Metabolite identification in hepatocyte samples and urine specimens was accomplished by high-resolution mass spectrometry using information-dependent acquisition. Both FDU-PB-22 and FUB-PB-22 were rapidly metabolized in HLM with half-lives of 12.4 and 11.5 min, respectively. In human hepatocyte samples, we identified seven metabolites for both compounds, generated by ester hydrolysis and further hydroxylation and/or glucuronidation. After ester hydrolysis, FDU-PB-22 and FUB-PB-22 yielded the same metabolite M7, fluorobenzylindole-3-carboxylic acid (FBI-COOH). M7 and M6 (hydroxylated FBI-COOH) were the major metabolites. In authentic urine specimens after ß-glucuronidase hydrolysis, M6 and M7 also were the predominant metabolites. Based on our study, we recommend M6 (hydroxylated FBI-COOH) and M7 (FBI-COOH) as suitable urinary markers for documenting FDU-PB-22 and/or FUB-PB-22 intake.


Asunto(s)
Cannabinoides/química , Cannabinoides/orina , Preparaciones de Plantas/química , Preparaciones de Plantas/orina , Cannabinoides/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Preparaciones de Plantas/farmacología
6.
Acta Pharmacol Sin ; 36(12): 1520-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26567730

RESUMEN

AIM: To investigate the mechanisms underlying the isomer-selective distribution of 3-n-butylphthalide (NBP) hydroxylated metabolites, 3-hydroxy-NBP (3-OH-NBP) and 10-hydroxy-NBP (10-OH-NBP), across the blood brain barrier (BBB). METHODS: After oral administration of NBP (20 mg/kg) to rats, the pharmacokinetics of two major hydroxylated metabolites, 3-OH-NBP and 10-OH-NBP, in plasma and brains were investigated. Plasma and brain protein binding of 3-OH-NBP and 10-OH-NBP was also assessed. To evaluate the influences of major efflux transporters, rats were pretreated with the P-gp inhibitor tariquidar (10 mg/kg, iv) and BCRP inhibitor pantoprazole (40 mg/kg, iv), then received 3-OH-NBP (12 mg/kg, iv) or 10-OH-NBP (3 mg/kg, iv). The metabolic profile of NBP was investigated in rat brain homogenate. RESULTS: After NBP administration, the plasma exposure of 3-OH-NBP was 4.64 times that of 10-OH-NBP, whereas the brain exposure of 3-OH-NBP was only 11.8% of 10-OH-NBP. In the rat plasma, 60%±5.2% of 10-OH-NBP was unbound to proteins versus only 22%±2.3% of 3-OH-NBP being unbound, whereas in the rat brain, free fractions of 3-OH-NBP and 10-OH-NBP were 100%±9.7% and 49.9%±14.1%, respectively. In the rats pretreated with tariquidar and pantoprazole, the unbound partition coefficient Kp,uu of 3-OH-NBP was significantly increased, while that of 10-OH-NBP showed a slight but not statistically significant increase. Incubation of rat brain homogenate with NBP yielded 3-OH-NBP but not 10-OH-NBP. CONCLUSION: The isomer-selective distribution of 10-OH-NBP and 3-OH-NBP across the BBB of rats is mainly attributed to the differences in plasma and brain protein binding and the efflux transport of 3-OH-NBP. The abundant 10-OH-NBP is not generated in rat brains.


Asunto(s)
Benzofuranos/farmacocinética , Barrera Hematoencefálica/metabolismo , Medicamentos Herbarios Chinos/farmacocinética , Administración Oral , Animales , Benzofuranos/administración & dosificación , Benzofuranos/sangre , Transporte Biológico , Medicamentos Herbarios Chinos/administración & dosificación , Isomerismo , Masculino , Ratas , Ratas Sprague-Dawley
7.
Drug Metab Dispos ; 42(4): 774-81, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24468743

RESUMEN

3-n-Butylphthalide (NBP) [(±)-3-butyl-1(3H)-isobenzofuranone] is an anti-cerebral-ischemia drug. Moderate hepatotoxicity has been observed in clinical applications. One of the major metabolites, 3-N-acetylcysteine-NBP, has been detected in human urine, indicating the formation of a reactive metabolite. We elucidated the formation mechanism of the reactive metabolite and its association with the hepatotoxicity of NBP. The in vitro incubations revealed that 3-glutathione-NBP (3-GSH-NBP) was observed only in fresh rat liver homogenate rather than in liver microsomes, liver cytosol, or liver 9,000g supernatant supplemented with NADPH and GSH. We also detected 3-GSH-NBP when 3'-phosphoadenosine-5'-phosphosulfate was added in GSH-fortified human liver cytosol (HLC). The formation of 3-GSH-NBP was 39.3-fold higher using 3-hydroxy-NBP (3-OH-NBP) as the substrate than NBP. The sulfotransferase (SULT) inhibitors DCNP (2,6-dichloro-4-nitrophenol) and quercetin suppressed 3-GSH-NBP formation in HLC by 75 and 82%, respectively, suggesting that 3-OH-NBP sulfation was involved in 3-GSH-NBP formation. Further SULT phenotyping revealed that SULT1A1 is the major isoform responsible for the sulfation. Dose-dependent toxicity was observed in primary rat hepatocytes exposed to 3-OH-NBP, with an IC50 of approximately 168 µM. Addition of DCNP and quercetin significantly increased cell viability, whereas l-buthionine-sulfoximine (a GSH depleter) decreased cell viability. Overall, our study revealed the underlying mechanism for the bioactivation of NBP is as follows. NBP is first oxidized to 3-OH-NBP and further undergoes sulfation to form 3-OH-NBP sulfate. The sulfate spontaneously cleaves off, generating highly reactive electrophilic cations, which can bind either to GSH to detoxify or to hepatocellular proteins to cause undesirable side effects.


Asunto(s)
Arilsulfotransferasa/metabolismo , Benzofuranos/metabolismo , Fármacos Neuroprotectores/metabolismo , Compuestos de Azufre/metabolismo , Acetilcisteína/metabolismo , Animales , Benzofuranos/farmacocinética , Benzofuranos/toxicidad , Biotransformación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citosol/enzimología , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Hepatocitos/efectos de los fármacos , Humanos , Hidroxilación , Riñón/enzimología , Riñón/metabolismo , Hígado/enzimología , Hígado/metabolismo , Masculino , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/toxicidad , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA