Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Mol Med ; 17(2): 118-132, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28266275

RESUMEN

The Endoplasmic Reticulum (ER) provides a conserved protein quality control system and plays a fundamental role in cell growth and homeostasis. Disturbances in the ER homeostasis may originate especially from hypoxia, glucose deficiency, presence of mutant proteins, that directly impair protein folding capacity and after deposition of unfolded and misfolded proteins within ER lumen trigger ER stress conditions. This subsequently activates the Unfolded Protein Response (UPR) branches, which have a dual pro-adaptive or pro-apoptotic role depending on the severity and time of duration of ER stress conditions. This review is the first to offer a detailed overview on molecular mechanisms of all major ER stress-dependent signaling branches, that are activated through three specific ER transmembrane receptors of impaired protein folding: Protein kinase RNA (PKR)-like ER kinase (PERK), Inositol-requiring enzyme-1 (IRE1) and Activating transcription factor 6 (ATF6). Molecular crosstalk among ER transmembrane receptors-dependent pathways determines a final UPR response, but the recent data reported that especially PERK over-activation has a significant impact on the development and progression of a wide spectrum of disease entities. Based on these findings, small-molecules, highly specific PERK inhibitors may provide effective, groundbreaking treatment strategy against human diseases. However, after foregoing in vitro cellular and in vivo animal models conducted examination, supplementary investigations of PERK inhibitors are required for their further clinical use. Future research may answer the question of how to minimize toxicity and side effects of characterized small-molecule PERK inhibitors, that may be used, as breakthrough drugs, alone or in combination with currently known models of therapy.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos , Factor de Transcripción Activador 6/metabolismo , Animales , Apoptosis/efectos de los fármacos , Biomarcadores , Supervivencia Celular/efectos de los fármacos , Susceptibilidad a Enfermedades , Descubrimiento de Drogas , Endorribonucleasas/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/metabolismo
2.
EMBO J ; 29(12): 2082-96, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20473272

RESUMEN

The transcription factor ATF4 regulates the expression of genes involved in amino acid metabolism, redox homeostasis and ER stress responses, and it is overexpressed in human solid tumours, suggesting that it has an important function in tumour progression. Here, we report that inhibition of ATF4 expression blocked proliferation and survival of transformed cells, despite an initial activation of cytoprotective macroautophagy. Knockdown of ATF4 significantly reduced the levels of asparagine synthetase (ASNS) and overexpression of ASNS or supplementation of asparagine in trans, reversed the proliferation block and increased survival in ATF4 knockdown cells. Both amino acid and glucose deprivation, stresses found in solid tumours, activated the upstream eukaryotic initiation factor 2alpha (eIF2alpha) kinase GCN2 to upregulate ATF4 target genes involved in amino acid synthesis and transport. GCN2 activation/overexpression and increased phospho-eIF2alpha were observed in human and mouse tumours compared with normal tissues and abrogation of ATF4 or GCN2 expression significantly inhibited tumour growth in vivo. We conclude that the GCN2-eIF2alpha-ATF4 pathway is critical for maintaining metabolic homeostasis in tumour cells, making it a novel and attractive target for anti-tumour approaches.


Asunto(s)
Factor de Transcripción Activador 4/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Factor de Transcripción Activador 4/antagonistas & inhibidores , Aminoácidos/metabolismo , Animales , Proliferación Celular , Supervivencia Celular , Medios de Cultivo/química , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA