Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Behav ; 222: 112936, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32417644

RESUMEN

The consumption of saturated fat and sucrose can have synergistic effects on the brain that do not occur when either nutrient is consumed by itself. In this study we hypothesize that saturated fat intake modulates glucose handling in the hypothalamus and nucleus accumbens, both brain areas highly involved in the control of food intake. To study this, male Wistar rats were given a free-choice high fat diet (fcHFD) or a control diet for two weeks. During the last seven days rats were given a daily bolus of either a 30% sucrose solution or water. Rats were sacrificed on day eight, 30 minutes after the onset of drinking. mRNA and protein levels of genes involved in glucose handling were assessed in the hypothalamus and nucleus accumbens. We found increased Glut3 and Glut4 mRNA in the hypothalamus of fcHFD-fed rats without an additional effect of the sucrose bolus. In the nucleus accumbens, the sucrose bolus increased Glut3 mRNA and decreased Glut4 mRNA independent of prior diet exposure. The ATP-sensitive potassium channel subunit Kir6.1 in the nucleus accumbens tended to be affected by the synergistic effects of a fcHFD and a sucrose bolus. These data suggest that acute glucose handling in the hypothalamus and nucleus accumbens may be affected by prior high fat exposure.


Asunto(s)
Dieta Alta en Grasa , Núcleo Accumbens , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa , Hipotálamo , Masculino , Ratas , Ratas Wistar , Sacarosa
2.
Neurosci Lett ; 637: 85-90, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27888043

RESUMEN

The brain is well known to regulate blood glucose, and the hypothalamus and hindbrain, in particular, have been studied extensively to understand the underlying mechanisms. Nuclei in these regions respond to alterations in blood glucose concentrations and can alter glucose liver output or glucose tissue uptake to maintain blood glucose concentrations within strict boundaries. Interestingly, several cortico-limbic regions also respond to alterations in glucose concentrations and have been shown to project to hypothalamic nuclei and glucoregulatory organs. For instance, electrical stimulation of the shell of the nucleus accumbens (sNAc) results in increased circulating concentrations of glucose and glucagon and activation of the lateral hypothalamus (LH). Whether this is caused by the simultaneous increase in serotonin release in the sNAc remains to be determined. To study the effect of sNAc serotonin on systemic glucose metabolism, we implanted bilateral microdialysis probes in the sNAc of male Wistar rats and infused fluoxetine, a serotonin reuptake inhibitor, or vehicle after which blood glucose, endogenous glucose production (EGP) and glucoregulatory hormones were measured. Fluoxetine in the sNAc for 1h significantly increased blood glucose concentrations without an effect on glucoregulatory hormones. This increase was accompanied by a higher EGP in the fluoxetine infused rats compared to the controls. These data provide further evidence for a role of sNAc-serotonin in the regulation of glucose metabolism.


Asunto(s)
Glucemia/metabolismo , Fluoxetina/farmacología , Glucosa/metabolismo , Núcleo Accumbens/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Fluoxetina/administración & dosificación , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Microdiálisis/métodos , Núcleo Accumbens/metabolismo , Ratas Wistar , Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA