Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36909636

RESUMEN

Loss of treatment-induced ovarian carcinoma (OC) growth suppression poses a major clinical challenge because it leads to disease recurrence. Therefore, there is a compelling need for well- -tolerated approaches that can support tumor growth-suppression after therapy is stopped. We have profiled ascites as OC tumor microenvironments to search for potential non-toxic soluble components that would activate tumor suppressor pathways in OC cells. Our investigations revealed that low levels of taurine, a non-proteogenic sulfonic amino acid, were present within OC ascites. Taurine supplementation, beyond levels found in ascites, induced growth suppression without causing cytotoxicity in various OC cells, including chemotherapy-resistant cell clones and patient-derived organoids representing primary or chemotherapy recovered disease. Inhibition of proliferation by taurine was linked to increased mutant or wild-type p53 proteins binding to DNA, induction of p21, and independently of p53, TIGAR expression. Taurine-induced activation of p21 and TIGAR was associated with suppression of cell-cycle progression, glycolysis, and mitochondrial respiration. Expression of p21 or TIGAR in OC cells mimicked taurine-induced growth suppression. Our studies support the potential therapeutic value of taurine supplementation in OC.

2.
Case Rep Oncol ; 14(1): 224-231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776708

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the fourth leading cause of death from cancer worldwide, and for advanced HCC the prognosis is poor. Preliminary studies indicate mistletoe extracts may have anticancer activity for HCC. METHODS: A prospective observational case series of advanced HCC patients that chose to take a mistletoe extract called viscum fraxini-2 (VF-2) alone for treatment. Time on treatment, imaging, and laboratory values were collected for descriptive analyses. RESULTS: A total of 12 patients with advanced HCC enrolled onto the protocol, and 10 patients had data available for evaluation. The majority were male (10/12) with a median age of 64 (SD 11). Most patients had received sorafenib therapy (9/12) and had varying Child-Pugh classes (A-4, B-6, C-2). Treatment with VF-2 ranged from 1 to 36 weeks with a mean of 12.3 weeks (SD 12). Six patients received 8 weeks of treatment, and 3 patients received 12 or more weeks of treatment. For patients that received at least 4 weeks of treatment, the average AFP value stabilized during the first 4 weeks of treatment. Two patients experienced an AFP decrease of >30%, approximately 37 and 40% decreases at the nadir. One patient had stable disease of 9 months. Major side effects were fever, fatigue, rash, and local injection site reaction of swelling, redness, and tenderness. CONCLUSION: This case series of advanced HCC indicates that mistletoe extract VF-2 may have potential biological activity against HCC for selected patients. Research is needed to identify the active compound and predictive markers of response.

3.
Hum Mol Genet ; 16(9): 1113-23, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17400654

RESUMEN

The 'vanishing bone' or inherited osteolysis/arthritis syndromes represent a heterogeneous group of skeletal disorders characterized by mineralization defects of affected bones and joints. Differing in anatomical distribution, severity and associated syndromic features, gene identification in each 'vanishing bone' disorder should provide unique insights into genetic/molecular pathways contributing to the overall control of skeletal growth and development. We previously described and then demonstrated that the novel autosomal recessive osteolysis/arthritis syndrome, multicentric osteolysis with arthritis (MOA) (MIM #605156), was caused by inactivating mutations in the MMP2 gene [Al Aqeel, A., Al Sewairi, W., Edress, B., Gorlin, R.J., Desnick, R.J. and Martignetti, J.A. (2000) Inherited multicentric osteolysis with arthritis: A variant resembling Torg syndrome in a Saudi family. Am. J. Med. Genet., 93, 11-18.]. These in vivo results were counterintuitive and unexpected since previous in vitro studies suggested that MMP-2 overexpression and increased activity, not deficiency, would result in the bone and joint features of MOA. The apparent lack of a murine model [Itoh, T., Ikeda, T., Gomi, H., Nakao, S., Suzuki, T. and Itohara, S. (1997) Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J. Biol. Chem., 272, 22389-22392.] has hindered studies on disease pathogenesis and, more fundamentally, in addressing the paradox of how functional loss of a single proteolytic enzyme results in an apparent increase in bone loss. Here, we report that Mmp2-/- mice display attenuated features of human MOA including progressive loss of bone mineral density, articular cartilage destruction and abnormal long bone and craniofacial development. Moreover, these changes are associated with markedly and developmentally restricted decreases in osteoblast and osteoclast numbers in vivo. Mmp2-/- mice have approximately 50% fewer osteoblasts and osteoclasts than control littermates at 4 days of life but these differences have nearly resolved by 4 weeks of age. In addition, despite normal cell numbers in vivo at 8 weeks of life, Mmp2-/- bone marrow cells are unable to effectively support osteoblast and osteoclast growth and differentiation in culture. Targeted inhibition of MMP-2 using siRNA in human SaOS2 and murine MC3T3 osteoblast cell lines resulted in decreased cell proliferation rates. Taken together, our findings suggest that MMP-2 plays a direct role in early skeletal development and bone cell growth and proliferation. Thus, Mmp2-/- mice provide a valuable biological resource for studying the pathophysiological mechanisms underlying the human disease and defining the in vivo physiological role of MMP-2.


Asunto(s)
Huesos/metabolismo , Calcificación Fisiológica/fisiología , Articulaciones/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Animales , Artritis/genética , Artritis/metabolismo , Artritis/patología , Remodelación Ósea/genética , Remodelación Ósea/fisiología , Huesos/anomalías , Huesos/fisiopatología , Calcificación Fisiológica/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Anomalías Craneofaciales/enzimología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/fisiopatología , Eliminación de Gen , Humanos , Inmunohistoquímica , Articulaciones/patología , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Noqueados , Osteoblastos/enzimología , Osteoblastos/patología , Osteoclastos/enzimología , Osteoclastos/patología , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA