Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 407: 135112, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493479

RESUMEN

We studied the effect of dietary linseed oil (LSO) supplementation and DGAT1 K232A (DGAT1) polymorphism on the triacylglycerol composition and crystallization of bovine milk fat. LSO supplementation increased unsaturated triacylglycerols, notably in the C52-C54 carbon range, while reducing the saturated C29-C49 triacylglycerols. These changes were associated with an increase in the low-melting fraction and the crystal lamellar thickness, as well as a reduction in the medium and high-melting fractions and the formation of the most abundant crystal type at 20 °C (ß'-2 polymorph). Furthermore, DGAT1 KK was associated with higher levels of odd-chain saturated triacylglycerols than DGAT1 AA, and it was also associated with an increase in the high-melting fraction and the endset melting temperature. An interaction between diet and DGAT1 for the unsaturated C54 triacylglycerols accentuated the effects of LSO supplementation with DGAT1 AA. These findings show that genetic polymorphism and cows' diet can have considerable effects on milk fat properties.


Asunto(s)
Ácidos Grasos , Leche , Animales , Femenino , Bovinos , Leche/química , Ácidos Grasos/análisis , Aceite de Linaza/análisis , Triglicéridos/análisis , Cristalización , Polimorfismo Genético , Suplementos Dietéticos , Lactancia/genética
2.
J Dairy Sci ; 105(9): 7399-7415, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35879170

RESUMEN

As milk production has significantly increased over the past decade(s), existing estimates of the B-vitamin needs of the modern dairy cow are currently being reconsidered, as suboptimal B-vitamin supply may affect metabolic efficiency. At the same time, however, "true" (i.e., biologically active forms, excluding nonfunctional analogs) B-vitamin supply also cannot be adequately estimated by dietary intake, as the rumen microbiota has been shown to play a significant role in synthesis and utilization of B vitamins. Given their complex impact on the metabolism of dairy cows, incorporating these key nutrients into the next generation of mathematical models could help to better predict animal production and performance. Therefore, the purpose of this study was to generate hypotheses of regulation in the absence of supplemental B vitamins by creating empirical models, through a meta-analysis, to describe true B-vitamin supply to the cow (postruminal flow, PRF) and apparent ruminal synthesis (ARS). The database used for this meta-analysis consisted of 340 individual cow observations from 15 studies with 16 experiments, where diet and postruminal digesta samples were (post hoc) analyzed for content of B vitamins (B1, B2, B3, B6, B9, B12). Equations of univariate and multivariate linear form were considered. Models describing ARS considered dry matter intake (DMI, kg/d), B-vitamin dietary concentration [mg/kg of dry matter (DM)] and rumen-level variables such as rumen digestible neutral detergent fiber (NDF) and starch (g/kg of DM), total volatile fatty acids (VFA, mM), acetate, propionate, butyrate, and valerate molar proportions (% of VFA), mean pH, and fractional rates of degradation of NDF and starch (%/h). Models describing PRF considered dietary-level driving variables such as DMI, B-vitamin dietary concentration (mg/kg of DM), starch and crude protein (g/kg of DM) and forage NDF (g/kg of DM). Equations developed were required to contain all significant slope parameters and contained no significant collinearity between driving variables. Concordance correlation coefficient was used to evaluate the models on the developmental data set due to data scarcity. Overall, modeling ARS yielded better-performing models compared with modeling PRF, and DMI was included in all prediction equations as a scalar variable. The B-vitamin dietary concentration had a negative effect on the ARS of B1, B2, B3, and B6 but increased the PRF of B2 and B9. The rumen digestible NDF concentration had a negative effect on the ARS of B2, B3, and B6, whereas rumen digestible starch concentration had a negative effect on the ARS of B1 and a positive effect on the ARS of B9. In the best prediction models, the dietary starch increased PRF of B1, B2, and B9 but decreased PRF of B12. The equations developed may be used to better understand the effect of diet and ruminal environment on the true supply of B vitamins to the dairy cow and stimulate the development of better-defined requirements in the future.


Asunto(s)
Complejo Vitamínico B , Animales , Bovinos , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Digestión , Femenino , Fermentación , Lactancia/fisiología , Leche/química , Rumen/metabolismo , Almidón/metabolismo , Complejo Vitamínico B/metabolismo
3.
J Dairy Sci ; 104(11): 11931-11944, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34419279

RESUMEN

This study evaluated the effects of postpartum collection time and quality of colostrum fed to calves on the failure of passive transfer, growth, and small intestine development in the first 5 wk of life. Newborn calves (Holstein-Friesian × Jersey) were identified at birth and collected either early (E; within 12 h postpartum; n = 20) or late (L; 18-24 h postpartum; n = 20) and fed either high-quality colostrum [HQC, first milking colostrum with Brix% = 23 ± standard deviation (SD) 2] or low-quality colostrum (LQC, mixed colostrum and transition milk with Brix% = 12 ± 1) to create 4 treatments: E-HQC, E-LQC, L-HQC, and L-LQC (n = 10/treatment). After collection, calves (body weight = 32.3 ± 4.6 kg/calf) were fed either HQC or LQC (7.5% of their arrival body weight per feed) for the first 3 (L calves) or 4 feedings (E calves). All calves were then managed and fed similarly using automatic feeders which recorded individual intake of milk replacer and calf starter. Blood samples were taken at d 1 (after collection from dams but before colostrum feeding), 4, 14, and 35 of age to analyze selected metabolites. All calves were killed at d 35 ± 2 of age and histomorphology of duodenum, jejunum, and ileum was evaluated. At collection, 75% of E calves and 58% of L calves had serum total protein ≤52 g/L. At d 4 of age, calves fed HQC had greater serum total protein than calves fed LQC; however, failure of passive transfer (serum total protein ≤52 g/L) incidence did not differ between HQC and LQC. Collection time did not affect the scouring duration, but the amount of electrolyte used to treat sick calves was lower in L versus E calves, whereas feeding HQC versus LQC lowered both the scouring duration and electrolyte use to treat sick calves. Calves fed HQC had a greater total surface area of the duodenum (+23%) and jejunum (+17%) compared with LQC calves. Duodenal crypts were deeper in E-LQC calves than E-HQC and L-HQC calves, whereas L-LQC calves were intermediate. Villus height to crypt depth ratio in duodenum, jejunum, and ileum was greater in HQC than LQC calves. A trend toward greater average daily gain was observed in HQC versus LQC calves (667 vs. 590 g/d) but the average daily gain was not influenced by collection time. Serum IGF-1 at d 4 was higher in HQC versus LQC calves and this might have contributed to greater average daily gain and small intestine development. Calves fed HQC had higher feed conversion ratios (FCR; total body weight gain/total dry matter intake) compared with LQC calves, and L calves had higher FCR compared with E calves. In conclusion, in comparison to feeding LQC, feeding HQC reduced the scouring duration, enhanced surface area of duodenum and jejunum, and improved FCR during the first 5 wk of calf age. Postpartum collection time of calves did not affect small intestine development, but L calves had higher FCR and required a lesser volume of electrolytes to treat scours compared with E calves during the first 35 d of life.


Asunto(s)
Calostro , Dieta , Alimentación Animal/análisis , Animales , Animales Recién Nacidos , Bovinos , Dieta/veterinaria , Femenino , Inmunización Pasiva/veterinaria , Intestino Delgado , Periodo Posparto , Embarazo , Destete
4.
J Dairy Sci ; 103(12): 11375-11385, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32981733

RESUMEN

Supplementing a diet with nitrate is regarded as an effective and promising methane (CH4) mitigation strategy by competing with methanogens for available hydrogen through its reduction of ammonia in the rumen. Studies have shown major reductions in CH4 emissions with nitrate supplementation, but with large variation in response. The objective of this study was to quantitatively investigate the effect of dietary nitrate on enteric CH4 production and yield and evaluate the variables with high potential to explain the heterogeneity of between-study variability using meta-analytical models. A data set containing 56 treatments from 24 studies was developed to conduct a meta-analysis. Dry matter (DM) intake, nitrate dose (g/kg of DM), animal body weight, roughage proportion of diet, dietary crude protein and neutral detergent fiber content, CH4 measurement technique, and type of cattle (beef or dairy) were considered as explanatory variables. Average DM intake and CH4 production for dairy cows (16.2 ± 2.93 kg/d; 311 ± 58.8 g/d) were much higher than for beef cattle (8.1 ± 1.57 kg/d; 146 ± 50.9 g/d). Therefore, a relative mean difference was calculated and used to conduct random-effect and mixed-effect model analysis to eliminate the large variations between types of animal due to intake. The final mixed-effect model for CH4 production (g of CH4/d) had 3 explanatory variables and included nitrate dose, type of cattle, and DM intake. The final mixed-effect model for CH4 yield (g of CH4/kg of DM intake) had 2 explanatory variables and included nitrate dose and type of cattle. Nitrate effect sizes on CH4 production (dairy: -20.4 ± 1.89%; beef: -10.1 ± 1.52%) and yield (dairy: -15.5 ± 1.15%; beef: -8.95 ± 1.764%) were significantly different between the 2 types of cattle. When data from slow-release nitrate sources were removed from the analysis, there was no significant difference in type of cattle anymore for CH4 production and yield. Nitrate dose enhanced the mitigating effect of nitrate on CH4 production and yield by 0.911 ± 0.1407% and 0.728 ± 0.2034%, respectively, for every 1 g/kg of DM increase from its mean dietary inclusion (16.7 g/kg of DM). An increase of 1 kg of DM/d in DM intake from its mean dietary intake (11.1 kg of DM/d) decreased the effect of nitrate on CH4 production by 0.691 ± 0.2944%. Overall, this meta-analysis demonstrated that nitrate supplementation reduces CH4 production and yield in a dose-dependent manner, and that elevated DM intake decreases the effect of nitrate supplementation on CH4 production. Furthermore, the stronger antimethanogenic effect on CH4 production and yield in dairy cows than in beef steers could be related to use of slow-release nitrate in beef cattle.


Asunto(s)
Bovinos/metabolismo , Metano/biosíntesis , Nitratos/administración & dosificación , Amoníaco/metabolismo , Animales , Peso Corporal , Enfermedades de los Bovinos/metabolismo , Dieta/veterinaria , Fibras de la Dieta/administración & dosificación , Fibras de la Dieta/metabolismo , Suplementos Dietéticos , Femenino , Leche/metabolismo , Rumen/efectos de los fármacos , Rumen/metabolismo
5.
J Dairy Sci ; 103(5): 4754-4764, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32197854

RESUMEN

The development of the small intestine (SI) is important for the health and growth of neonatal calves. This study evaluated the effect of arginine (Arg) and glutamine (Gln) supplementation and 2 levels of milk allowance on the histomorphological development of the SI in preweaning calves. Sixty mixed-sex Friesian × Jersey calves (3-5 d of age) were offered reconstituted whole milk (125 g/L, 26% fat, 26% protein) at either high (20% of arrival body weight/d; HM) or low (10% of arrival body weight/d; LM) milk allowance without (Ctrl) or with supplementary Arg or Gln (at 1% of milk dry matter) in a 2 × 3 factorial design (n = 10/treatment). After 35 d on the diets, all calves were slaughtered to collect tissues for examination of SI development. Calves in the HM group had higher milk intake, total weight gain, and average daily gain compared with LM calves, but no effect of AA supplementation nor an interaction between milk allowance and AA supplementation was observed. For the duodenum, we observed an AA by milk allowance interaction for villus height and width, and goblet cell number per villus (HM-Arg > HM-Gln > HM-Ctrl), and villus height to crypt depth ratio (HM-Arg > HM-Gln = HM-Ctrl), but no effect of AA supplementation in the LM group. Goblet cell numbers per 100 µm of SI were greater in Arg-supplemented calves than in unsupplemented controls, with Gln-supplemented calves intermediate to but not different from the other groups. Epithelium thickness was greater in LM than in HM calves. Villus density, crypt depth, and muscle thickness did not differ between groups. For the jejunum, there was an AA by milk allowance interaction for villus height, villus surface area, and villus height to crypt depth ratio (HM-Arg = HM-Gln > HM-Ctrl), with no effect of AA supplementation in the LM groups. Amino acid supplementation affected goblet cell number per villus (HM-Gln > HM-Ctrl calves, HM-Arg intermediate), and both LM-Arg and LM-Gln calves had greater numbers than LM-Ctrl calves. Villus width, crypt depth, and muscle thickness were greater in HM than LM calves but there was no effect of AA supplementation. Villus density, goblet cell number per 100 µm of SI, and epithelium thickness were unaffected by AA supplementation and milk allowance. Milk allowance and AA supplementation had no effect on SI morphology in the ileum. Increasing milk allowance improved villus height, width, and surface area but only in Arg- or Gln-supplemented calves, not in control calves. The observed changes in development may be important for intestinal functionality, integrity, and barrier function in preweaning calves, potentially through increased cell growth and proliferation or reduced levels of cellular atrophy.


Asunto(s)
Alimentación Animal , Arginina/farmacología , Bovinos/crecimiento & desarrollo , Suplementos Dietéticos , Glutamina/farmacología , Intestino Delgado/crecimiento & desarrollo , Leche , Animales , Peso Corporal , Dieta/veterinaria , Femenino , Mucosa Intestinal/crecimiento & desarrollo , Intestino Delgado/metabolismo , Masculino , Aumento de Peso
6.
J Dairy Sci ; 102(7): 6603-6613, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31103304

RESUMEN

Secretory capacity of bovine mammary glands is enabled by a high number of secretory cells and their ability to use a range of metabolites to produce milk components. We isolated RNA from milk fat to measure expression of genes involved in energy-yielding pathways and the unfolded protein response in mammary glands of lactating cows given supplemental energy from protein (PT) and fat (FT) tested in a 2 × 2 factorial arrangement. We hypothesized that PT and FT would affect expression of genes in the branched-chain AA catabolic pathway and tricarboxylic acid (TCA) cycle based on the different energy types (aminogenic versus lipogenic) used to synthesize milk components. We also hypothesized that the response of genes related to endoplasmic reticulum (ER) homeostasis via the unfolded protein response would reflect the increase in milk production stimulated by PT and FT. Fifty-six multiparous Holstein-Friesian dairy cows were fed a basal total mixed ration (34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter basis) for a 28-d control period. Experimental rations were then fed for 28 d, consisting of (1) low protein, low fat (LP/LF); (2) high protein, low fat (HP/LF); (3) low protein, high fat (LP/HF); or (4) high protein and high fat (HP/HF). To obtain the high-protein (HP) and high-fat (HF) diets, intake of the basal ration was restricted and supplemented isoenergetically (net energy basis) with 2.0 kg/d rumen-protected protein (soybean + rapeseed, 50:50 mixture on dry matter basis) and 0.68 kg/d hydrogenated palm fatty acids on a dry matter basis. RNA from milk fat samples collected on d 27 of each period underwent real-time quantitative PCR. Energy from protein increased expression of BCAT1 (branched-chain amino acid transferase 1) mRNA, but only at the LF level, and tended to decrease expression of mRNA encoding the main subunit of the branched-chain keto-acid dehydrogenase complex. mRNA expression of malic enzyme, a proposed channeling route for AA though the TCA cycle, was decreased by PT, but only at the LF level. Expression of genes associated with de novo fatty acid synthesis was not affected by PT or FT. Energy from fat had no independent effect on genes related to ER homeostasis. At the LF level, PT activated XBP1 (X-box binding protein 1) mRNA. At the HF level, PT increased mRNA expression of the gene encoding GADD34 (growth arrest and DNA damage-inducible 34). These findings support our hypothesis that mammary cells use aminogenic and lipogenic precursors differently for milk component production when dietary intervention alters AA and fatty acid supply. They also suggest that mammary cells respond to increased AA supply through mechanisms of ER homeostasis, dependent on the presence of FT.


Asunto(s)
Alimentación Animal , Bovinos/metabolismo , Grasas de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Metabolismo Energético/genética , Glándulas Mamarias Animales/metabolismo , Respuesta de Proteína Desplegada/genética , Animales , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Grasos/análisis , Femenino , Lactancia , Glándulas Mamarias Animales/citología , Leche , Ensilaje , Zea mays
7.
J Dairy Sci ; 102(2): 1160-1175, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30594357

RESUMEN

Mammary gland utilization of AA and other metabolites in response to supplemental energy from protein (PT) and supplemental energy from fat (FT) was tested in a 2 × 2 factorial arrangement using a randomized complete block design. Fifty-six Holstein-Friesian dairy cows were adapted during a 28-d control period to a basal total mixed ration consisting of 34% grass silage, 33% corn silage, 5% grass hay, and 28% concentrate on a dry matter (DM) basis. Experimental rations were fed for 28 d immediately following the control period and consisted of (1) low protein, low fat (LP/LF), (2) high protein, low fat (HP/LF), (3) low protein, high fat (LP/HF), and (4) high protein, high fat (HP/HF). To obtain the high-protein (HP) and high-fat (HF) diets, intake of the basal ration was restricted and supplemented isoenergetically [net energy (MJ/d) basis] with 2.0 kg/d rumen-protected protein (soybean + rapeseed, 50:50 mixture on a DM basis) and 0.68 kg/d hydrogenated palm fatty acids on a DM basis. Arterial and venous blood samples were collected on d 28 of both periods. Isoenergetic supplements (MJ/d) of protein and fat independently and additively increased milk yield, PT increased protein yield, and FT increased fat yield. A PT × FT interaction affected arterial concentration of all essential AA (EAA) groups, where they increased in response to PT by a greater magnitude at the LF level (on average 35%) compared with the HF level (on average 14%). Mammary gland plasma flow was unaffected by PT or FT. Supplementation with PT tended to decrease mammary clearance of total EAA and decreased group 1 AA clearance by 19%. In response to PT, mammary uptake of total EAA and group 2 AA increased 12 and 14%, respectively, with significantly higher uptake of Arg, Ile, and Leu. Energy from fat had no effect on mammary clearance or uptake of any AA group. The mammary gland uptake:milk protein output ratio was not affected by FT, whereas PT increased this ratio for EAA and group 2 AA. Arterial plasma insulin concentration decreased in response to FT, in particular on the HP/HF diet, as indicated by a PT × FT interaction. Arterial concentrations of nonesterified fatty acids, triacylglycerol, and long-chain fatty acids increased in response to FT, and concentrations of ß-hydroxybutyrate and acetate decreased in response to FT only at the HP level. Mammary clearance and uptake of triacylglycerol and long-chain fatty acids increased in response to FT. Energy from PT and FT increased lactose yield despite no change in arterial glucose concentration or mammary glucose uptake. Mammary-sequestered glucose with PT or FT was used in the same amount for lactose synthesis, and a positive net mammary glucose balance was found across all treatments. Results presented here illustrate metabolic flexibility of the mammary gland in its use of aminogenic versus lipogenic substrates for milk synthesis.


Asunto(s)
Aminoácidos/metabolismo , Bovinos/metabolismo , Grasas de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Metabolismo Energético/fisiología , Glándulas Mamarias Animales/metabolismo , Animales , Dieta/veterinaria , Ingestión de Energía , Ácidos Grasos/análisis , Ácidos Grasos/sangre , Ácidos Grasos/metabolismo , Ácidos Grasos no Esterificados/sangre , Femenino , Lactancia/fisiología , Lactosa/metabolismo , Glándulas Mamarias Animales/irrigación sanguínea , Leche/química , Proteínas de la Leche/análisis , Rumen/metabolismo , Ensilaje/análisis , Triglicéridos/sangre , Triglicéridos/metabolismo
8.
J Dairy Sci ; 101(6): 5599-5604, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29550127

RESUMEN

Several in vivo CH4 measurement techniques have been developed but are not suitable for precise and accurate large-scale measurements; hence, proxies for CH4 emissions in dairy cattle have been proposed, including the milk fatty acid (MFA) profile. The aim of the present study was to determine whether recently developed MFA-based prediction equations for CH4 emission are applicable to dairy cows with different diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism and fed diets with and without linseed oil. Data from a crossover design experiment were used, encompassing 2 dietary treatments (i.e., a control diet and a linseed oil diet, with a difference in dietary fat content of 22 g/kg of dry matter) and 24 lactating Holstein-Friesian cows (i.e., 12 cows with DGAT1 KK genotype and 12 cows with DGAT1 AA genotype). Enteric CH4 production was measured in climate respiration chambers and the MFA profile was analyzed using gas chromatography. Observed CH4 emissions were compared with CH4 emissions predicted by previously developed MFA-based CH4 prediction equations. The results indicate that different types of diets (i.e., with or without linseed oil), but not the DGAT1 K232A polymorphism, affect the ability of previously derived prediction equations to predict CH4 emission. However, the concordance correlation coefficient was smaller than or equal to 0.30 for both dietary treatments separately, both DGAT1 genotypes separately, and the complete data set. We therefore concluded that previously derived MFA-based CH4 prediction equations can neither accurately nor precisely predict CH4 emissions of dairy cows managed under strategies differing from those under which the original prediction equations were developed.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/genética , Ácidos Grasos/análisis , Aceite de Linaza/farmacología , Metano/biosíntesis , Leche/química , Animales , Bovinos , Dieta , Femenino , Lactancia , Ensilaje , Zea mays
9.
J Dairy Sci ; 101(5): 4570-4585, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29454698

RESUMEN

Reports on the effects of length of dry period (DP) on udder health of cows that were not treated with dry cow antibiotics are scarce. Additionally, the effects of a reduced dietary energy level for cows with a 0-d DP on udder health have not yet been studied. The aims of this study were (1) to compare effects of a 0-d or 30-d DP without use of dry cow antibiotics on udder health across the DP and subsequent lactation in dairy cows fed different dietary energy levels and (2) to evaluate associations between udder health and metabolic status of dairy cows. Five weeks before the expected calving date, Holstein-Friesian dairy cows (n = 115) were blocked for parity, expected calving date, and milk yield and somatic cell count (SCC) at their 2 last test days and were randomly assigned to 2 DP lengths: 0-d DP (n = 77) or 30-d DP (n = 38). Quarter milk samples were taken in wk 5 prepartum and in wk 1 and 5 postpartum. Proportion of quarters with elevated SCC (SCC ≥200,000 cells/mL) and proportion of udder pathogens in quarter milk samples did not differ between DP lengths among weeks. After calving, 102 of these cows were randomly assigned to 3 treatments: a 30-d DP with a standard energy level required for expected milk yield (30-d DP SEL; n = 36), a 0-d DP with the same energy level as cows with a 30-d DP (0-d DP SEL; n = 33), and a 0-d DP with a low energy level (0-d DP LEL, n = 33). From wk 8 of lactation onward, cows received either a glucogenic ration consisting of corn silage and grass silage or a lipogenic ration consisting of grass silage and sugar beet pulp at a standard or low energy level. During wk 1 to 7 postpartum, treatment did not affect SCC or SCC corrected for milk yield. During wk 8 to 44 of lactation, 0-d DP SEL cows had a greater SCC than 0-d DP LEL or 30-d DP SEL cows and had a greater SCC corrected for milk yield than 0-d DP LEL cows. During wk 1 to 44 of lactation, occurrence of at least 1 elevation of SCC (SCC ≥200,000 cells/mL after 2 wk of SCC <200,000 cells/mL) was not different among treatments. The 0-d DP SEL cows but not the 0-d DP LEL cows tended to have a 2.17 times greater hazard of having a case of clinical mastitis at any time in lactation than 30-d DP SEL cows. In wk 1 to 44 of lactation, lower fat- and protein- corrected milk yield and energy intake, greater energy balance, and greater plasma insulin concentration were associated with greater SCC. In conclusion, DP length did not affect udder health in the DP and in early lactation but seemed to decrease udder health for 0-d DP SEL cows in later lactation compared with 30-d DP SEL or 0-d DP LEL cows.


Asunto(s)
Ingestión de Energía/fisiología , Lactancia/fisiología , Glándulas Mamarias Animales/fisiopatología , Mastitis Bovina/epidemiología , Animales , Antibacterianos/administración & dosificación , Beta vulgaris , Bovinos , Recuento de Células , Dieta/veterinaria , Metabolismo Energético , Femenino , Insulina/sangre , Mastitis Bovina/prevención & control , Leche/citología , Leche/microbiología , Paridad , Poaceae , Embarazo , Ensilaje , Zea mays
10.
J Dairy Sci ; 100(11): 8939-8957, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28918153

RESUMEN

Complex interactions between rumen microbiota, cow genetics, and diet composition may exist. Therefore, the effect of linseed oil, DGAT1 K232A polymorphism (DGAT1), and the interaction between linseed oil and DGAT1 on CH4 and H2 emission, energy and N metabolism, lactation performance, ruminal fermentation, and rumen bacterial and archaeal composition was investigated. Twenty-four lactating Holstein-Friesian cows (i.e., 12 with DGAT1 KK genotype and 12 with DGAT1 AA genotype) were fed 2 diets in a crossover design: a control diet and a linseed oil diet (LSO) with a difference of 22 g/kg of dry matter (DM) in fat content between the 2 diets. Both diets consisted of 40% corn silage, 30% grass silage, and 30% concentrates (DM basis). Apparent digestibility, lactation performance, N and energy balance, and CH4 emission were measured in climate respiration chambers, and rumen fluid samples were collected using the oral stomach tube technique. No linseed oil by DGAT1 interactions were observed for digestibility, milk production and composition, energy and N balance, CH4 and H2 emissions, and rumen volatile fatty acid concentrations. The DGAT1 KK genotype was associated with a lower proportion of polyunsaturated fatty acids in milk fat, and with a higher milk fat and protein content, and proportion of saturated fatty acids in milk fat compared with the DGAT1 AA genotype, whereas the fat- and protein-corrected milk yield was unaffected by DGAT1. Also, DGAT1 did not affect nutrient digestibility, CH4 or H2 emission, ruminal fermentation or ruminal archaeal and bacterial concentrations. Rumen bacterial and archaeal composition was also unaffected in terms of the whole community, whereas at the genus level the relative abundances of some bacterial genera were found to be affected by DGAT1. The DGAT1 KK genotype was associated with a lower metabolizability (i.e., ratio of metabolizable to gross energy intake), and with a tendency for a lower milk N efficiency compared with the DGAT1 AA genotype. The LSO diet tended to decrease CH4 production (g/d) by 8%, and significantly decreased CH4 yield (g/kg of DM intake) by 6% and CH4 intensity (g/kg of fat- and protein-corrected milk) by 11%, but did not affect H2 emission. The LSO diet also decreased ruminal acetate molar proportion, the acetate to propionate ratio, and the archaea to bacteria ratio, whereas ruminal propionate molar proportion and milk N efficiency increased. Ruminal bacterial and archaeal composition tended to be affected by diet in terms of the whole community, with several bacterial genera found to be significantly affected by diet. These results indicate that DGAT1 does not affect enteric CH4 emission and production pathways, but that it does affect traits other than lactation characteristics, including metabolizability, N efficiency, and the relative abundance of Bifidobacterium. Additionally, linseed oil reduces CH4 emission independent of DGAT1 and affects the rumen microbiota and its fermentative activity.


Asunto(s)
Bovinos , Diacilglicerol O-Acetiltransferasa/genética , Dieta/veterinaria , Lactancia/efectos de los fármacos , Aceite de Linaza/farmacología , Metano/biosíntesis , Nitrógeno/metabolismo , Animales , Metabolismo Energético , Ácidos Grasos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Femenino , Fermentación , Leche/química , Proteínas de la Leche/análisis , Poaceae/metabolismo , Polimorfismo Genético , Rumen/metabolismo , Ensilaje/análisis , Zea mays/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-28069654

RESUMEN

Hearing loss and nephrotoxicity are associated with prolonged treatment duration and higher dosage of amikacin and kanamycin. In our tuberculosis center, we used therapeutic drug monitoring (TDM) targeting preset pharmacokinetic/pharmacodynamic (PK/PD) surrogate endpoints in an attempt to maintain efficacy while preventing (oto)toxicity. To evaluate this strategy, we retrospectively evaluated medical charts of tuberculosis (TB) patients treated with amikacin or kanamycin in the period from 2000 to 2012. Patients with culture-confirmed multiresistant or extensively drug-resistant tuberculosis (MDR/XDR-TB) receiving amikacin or kanamycin as part of their TB treatment for at least 3 days were eligible for inclusion in this retrospective study. Clinical data, including maximum concentration (Cmax), Cmin, and audiometry data, were extracted from the patients' medical charts. A total of 80 patients met the inclusion criteria. The mean weighted Cmax/MIC ratios obtained from 57 patients were 31.2 for amikacin and 12.3 for kanamycin. The extent of hearing loss was limited and correlated with the cumulative drug dose per kg of body weight during daily administration. At follow-up, 35 (67.3%) of all patients had successful outcome; there were no relapses. At a median dose of 6.5 mg/kg, a correlation was found between the dose per kg of body weight during daily dosing and the extent of hearing loss in dB at 8,000 Hz. These findings suggest that the efficacy at this lower dosage is maintained with limited toxicity. A randomized controlled trial should provide final proof of the safety and efficacy of TDM-guided use of aminoglycosides in MDR-TB treatment.


Asunto(s)
Amicacina/farmacocinética , Antituberculosos/farmacocinética , Monitoreo de Drogas , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Pérdida Auditiva/diagnóstico , Kanamicina/farmacocinética , Mycobacterium tuberculosis/efectos de los fármacos , Adulto , Amicacina/efectos adversos , Amicacina/sangre , Antituberculosos/efectos adversos , Antituberculosos/sangre , Área Bajo la Curva , Audiometría , Disponibilidad Biológica , Esquema de Medicación , Cálculo de Dosificación de Drogas , Tuberculosis Extensivamente Resistente a Drogas/sangre , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Femenino , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/patología , Humanos , Kanamicina/efectos adversos , Kanamicina/sangre , Masculino , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/crecimiento & desarrollo , Estudios Retrospectivos
12.
Animal ; 11(4): 591-599, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27748233

RESUMEN

The adaptation of dairy cows to methane (CH4)-mitigating feed additives was evaluated using the in vitro gas production (GP) technique. Nine rumen-fistulated lactating Holstein cows were grouped into three blocks and within blocks randomly assigned to one of three experimental diets: Control (CON; no feed additive), Agolin Ruminant® (AR; 0.05 g/kg dry matter (DM)) or lauric acid (LA; 30 g/kg DM). Total mixed rations composed of maize silage, grass silage and concentrate were fed in a 40 : 30 : 30 ratio on DM basis. Rumen fluid was collected from each cow at days -4, 1, 4, 8, 15 and 22 relative to the introduction of the additives in the diets. On each of these days, a 48-h GP experiment was performed in which rumen fluid from each individual donor cow was incubated with each of the three substrates that reflected the treatment diets offered to the cows. DM intake was on average 19.8, 20.1 and 16.2 kg/day with an average fat- and protein-corrected milk production of 30.7, 31.7 and 26.2 kg/day with diet CON, AR and LA, respectively. In general, feed additives in the donor cow diet had a larger effect on gas and CH4 production than the same additives in the incubation substrate. Incubation substrate affected asymptotic GP, half-time of asymptotic CH4 production, total volatile fatty acid (VFA) concentration, molar proportions of propionate and butyrate and degradation of organic matter (OMD), but did not affect CH4 production. No substrate×day interactions were observed. A significant diet×day interaction was observed for in vitro gas and CH4 production, total VFA concentration, molar proportions of VFA and OMD. From day 4 onwards, the LA diet persistently reduced gas and CH4 production, total VFA concentration, acetate molar proportion and OMD, and increased propionate molar proportion. In vitro CH4 production was reduced by the AR diet on day 8, but not on days 15 and 22. In line with these findings, the molar proportion of propionate in fermentation fluid was greater, and that of acetate smaller, for the AR diet than for the CON diet on day 8, but not on days 15 and 22. Overall, the data indicate a short-term effect of AR on CH4 production, whereas the CH4-mitigating effect of LA persisted.


Asunto(s)
Bovinos/metabolismo , Dieta/veterinaria , Contenido Digestivo/química , Metano/biosíntesis , Rumen/metabolismo , Alimentación Animal/análisis , Animales , Suplementos Dietéticos/análisis , Femenino , Distribución Aleatoria
13.
Antimicrob Agents Chemother ; 60(7): 3942-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27067336

RESUMEN

For treatment of multidrug-resistant tuberculosis (MDR-TB), there is a scarcity of antituberculosis drugs. Co-trimoxazole is one of the available drug candidates, and it is already frequently coprescribed for TB-HIV-coinfected patients. However, only limited data are available on the pharmacokinetic (PK) and pharmacodynamic (PD) parameters of co-trimoxazole in TB patients. The objective of this study was to evaluate the PK parameters and in vitro PD data on the effective part of co-trimoxazole: sulfamethoxazole. In a prospective PK study in patients infected with drug-susceptible Mycobacterium tuberculosis (drug-susceptible TB patients) (age, >18), sulfamethoxazole-trimethoprim (SXT) was administered orally at a dose of 960 mg once daily. One-compartment population pharmacokinetic modeling was performed using MW\Pharm 3.81 (Mediware, Groningen, The Netherlands). The area under the concentration-time curve for the free, unbound fraction of a drug (ƒAUC)/MIC ratio and the period in which the free concentration exceeded the MIC (fT > MIC) were calculated. Twelve patients received 960 mg co-trimoxazole in addition to first-line drugs. The pharmacokinetic parameters of the population model were as follows (geometric mean ± standard deviation [SD]): metabolic clearance (CLm), 1.57 ± 3.71 liters/h; volume of distribution (V), 0.30 ± 0.05 liters · kg lean body mass(-1); drug clearance/creatinine clearance ratio (fr), 0.02 ± 0.13; gamma distribution rate constant (ktr_po), 2.18 ± 1.14; gamma distribution shape factor (n_po), 2.15 ± 0.39. The free fraction of sulfamethoxazole was 0.3, but ranged between 0.2 and 0.4. The median value of the MICs was 9.5 mg/liter (interquartile range [IQR], 4.75 to 9.5), and that of theƒAUC/MIC ratio was 14.3 (IQR, 13.0 to 17.5). The percentage of ƒT > MIC ranged between 43 and 100% of the dosing interval. The PK and PD data from this study are useful to explore a future dosing regimen of co-trimoxazole for MDR-TB treatment. (This study has been registered at ClinicalTrials.gov under registration no. NCT01832987.).


Asunto(s)
Antituberculosos/uso terapéutico , Sulfametoxazol/uso terapéutico , Tuberculosis/tratamiento farmacológico , Adulto , Antibacterianos/farmacocinética , Antibacterianos/uso terapéutico , Antituberculosos/farmacocinética , Femenino , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Estudios Prospectivos , Sulfametoxazol/farmacocinética , Tuberculosis/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/metabolismo
14.
J Dairy Sci ; 97(11): 7115-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25218750

RESUMEN

Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4 production and milk FA concentration induced by dietary lipid supplements. The aim of this study was to perform a meta-analysis to quantify relationships between CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Data from 8 experiments encompassing 30 different dietary treatments and 146 observations were included. Yield of CH4 measured in these experiments was 21.5 ± 2.46 g/kg of dry matter intake (DMI) and 13.9 ± 2.30 g/kg of fat- and protein-corrected milk (FPCM). Correlation coefficients were chosen as effect size of the relationship between CH4 yield and individual milk FA concentration (g/100g of FA). Average true correlation coefficients were estimated by a random-effects model. Milk FA concentrations of C6:0, C8:0, C10:0, C16:0, and C16:0-iso were significantly or tended to be positively related to CH4 yield per unit of feed. Concentrations of trans-6+7+8+9 C18:1, trans-10+11 C18:1, cis-11 C18:1, cis-12 C18:1, cis-13 C18:1, trans-16+cis-14 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of feed. Milk FA concentrations of C10:0, C12:0, C14:0-iso, C14:0, cis-9 C14:1, C15:0, and C16:0 were significantly or tended to be positively related to CH4 yield per unit of milk. Concentrations of C4:0, C18:0, trans-10+11 C18:1, cis-9 C18:1, cis-11 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of milk. Mixed model multiple regression and a stepwise selection procedure of milk FA based on the Bayesian information criterion to predict CH4 yield with milk FA as input (g/100g of FA) resulted in the following prediction equations: CH4 (g/kg of DMI)=23.39 + 9.74 × C16:0-iso - 1.06 × trans-10+11 C18:1 - 1.75 × cis-9,12 C18:2 (R(2) = 0.54), and CH4 (g/kg of FPCM) = 21.13 - 1.38 × C4:0 + 8.53 × C16:0-iso - 0.22 × cis-9 C18:1 - 0.59 × trans-10+11 C18:1 (R(2) = 0.47). This indicated that milk FA profile has a moderate potential for predicting CH4 yield per unit of feed and a slightly lower potential for predicting CH4 yield per unit of milk.


Asunto(s)
Bovinos/metabolismo , Ácidos Grasos/metabolismo , Metano/metabolismo , Leche/química , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Ácidos Grasos/química , Femenino , Lactancia , Modelos Biológicos
15.
Poult Sci ; 93(8): 1981-92, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24902701

RESUMEN

Phytase, a widely used feed additive in poultry diets, increases P availability and subsequently reduces inorganic-P supplementation and P-excretion. Phytase supplementation effect on P-retention in poultry has been investigated, but the effect sizes were highly variable. The present study's objective was to conduct several meta-analyses to quantitatively summarize the phytase effect on P-retention in broilers and layers. Data from 103 and 26 controlled experiments testing the phytase effect on P-retention were included in 2 separate meta-analyses for broilers and layers, respectively. The mean difference calculated by subtracting the means of P-retention for the control group from the phytase-supplemented group was chosen as an effect size estimate. Between-study variability (heterogeneity) of mean difference was estimated using random-effect models and had a significant effect (P < 0.01) in both broilers and layers. Therefore, random-effect models were extended to mixed-effect models to explain heterogeneity and obtain final phytase effect size estimates. Available dietary and bird variables were included as fixed effects in the mixed-effect models. The final broiler mixed-effect model included phytase dose and Ca-to-total-P ratio (Ca:tP), explaining 15.6% of the heterogeneity. Other variables such as breed might further explain between-study variance. Broilers consuming control diets were associated with 48.4% P-retention. Exogenous phytase supplementation at 1,039 FTU/kg of diet increased P-retention by 8.6 percentage units on average. A unit increase of phytase dose and Ca:tP from their means further increased P-retention. For layers, the final mixed-effect models included dietary Ca, age, and experimental period length. The variables explained 65.9% of the heterogeneity. Layers receiving exogenous phytase at 371 FTU/kg were associated with a 5.02 percentage unit increase in P-retention. A unit increase in dietary Ca from its mean increased P-retention, whereas an increase in the experiment length and layer's age decreased P-retention. Phytase supplementation had a significant positive effect on P-retention in both broilers and layers, but effect sizes across studies were significantly heterogeneous due to differences in Ca contents, experiment length, bird age, and phytase dose.


Asunto(s)
6-Fitasa , Pollos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Fósforo/metabolismo , Alimentación Animal/análisis , Animales , Calcio de la Dieta/metabolismo , Modelos Biológicos
16.
Poult Sci ; 92(9): 2498-508, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23960135

RESUMEN

This contribution focuses on applying mathematical models based on systems of ordinary first-order differential equations to synthesize and interpret data from egg production experiments. Models based on linear systems of differential equations are contrasted with those based on nonlinear systems. Regression equations arising from analytical solutions to linear compartmental schemes are considered as candidate functions for describing egg production curves, together with aspects of parameter estimation. Extant candidate functions are reviewed, a role for growth functions such as the Gompertz equation suggested, and a function based on a simple new model outlined. Structurally, the new model comprises a single pool with an inflow and an outflow. Compartmental simulation models based on nonlinear systems of differential equations, and thus requiring numerical solution, are next discussed, and aspects of parameter estimation considered. This type of model is illustrated in relation to development and evaluation of a dynamic model of calcium and phosphorus flows in layers. The model consists of 8 state variables representing calcium and phosphorus pools in the crop, stomachs, plasma, and bone. The flow equations are described by Michaelis-Menten or mass action forms. Experiments that measure Ca and P uptake in layers fed different calcium concentrations during shell-forming days are used to evaluate the model. In addition to providing a useful management tool, such a simulation model also provides a means to evaluate feeding strategies aimed at reducing excretion of potential pollutants in poultry manure to the environment.


Asunto(s)
Óvulo/fisiología , Aves de Corral/fisiología , Reproducción , Proyectos de Investigación , Crianza de Animales Domésticos , Animales , Calcio/administración & dosificación , Calcio/metabolismo , Simulación por Computador , Femenino , Modelos Biológicos , Fósforo/administración & dosificación , Fósforo/metabolismo
17.
J Dairy Sci ; 96(7): 4173-81, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23664339

RESUMEN

Weekly samples representative of Dutch milk were analyzed for concentrations of n-3 and n-6 fatty acids (FA). Concentrations of the n-3 FA α-linolenic acid (ALA), eicosatetraenoic acid, eicosapentaenoic acid, and docosapentaenoic acid were 0.495±0.027, 0.041±0.004, 0.067±0.005, and 0.086±0.008g per 100g of fat, respectively, whereas docosahexaenoic acid was absent or present in concentrations lower than 0.020g per 100g of fat. Concentrations of the n-6 FA linoleic acid (LeA), γ-linoleic acid, dihomo-γ-linoleic acid, and arachidonic acid were 1.428±0.068, 0.070±0.007, 0.066±0.004, and 0.089±0.004g per 100g of fat, respectively; adrenic acid was present in concentrations lower than 0.020g per 100g of fat, whereas docosapentaenoic acid was absent in all samples. The concentrations of ALA and LeA were significantly higher in spring and summer, compared with autumn and winter. The concentrations of all other ALA- and LeA-derived n-3 and n-6 FA were not significantly different between seasons. The contribution of milk fat to the daily intake of eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid was calculated for human consumption levels in different countries. Milk fat contributed between 10.7 and 14.1% to the daily intake of eicosapentaenoic acid and between 23.5 and 34.2% to the intake of docosapentaenoic acid; whereas docosahexaenoic acid contribution was marginal. Arachidonic acid from milk fat contributed between 10.5 and 18.8% to the human intake of n-6 FA.


Asunto(s)
Dieta , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-6/análisis , Leche/química , Animales , Bovinos , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/análisis , Ácidos Docosahexaenoicos/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Ácidos Grasos Insaturados/administración & dosificación , Humanos , Países Bajos , Estaciones del Año
18.
J Dairy Sci ; 96(6): 3936-49, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23567051

RESUMEN

A meta-analysis investigation based on literature data was conducted to estimate the effect size of nutritional and animal factors on phosphorus (P) excretion in feces and concentrations of P in milk. Two data sets were created for statistical analysis: One to derive prediction equations for P in feces (25 studies; 130 treatments) and another for P in milk (19 studies; 94 treatments). Prediction equations were derived using mixed model regression analysis with a random effect for study, and equations were evaluated based on values for Bayesian information criterion (BIC), root mean square prediction error (RMSPE), and concordance correlation coefficient (CCC) statistics. In terms of RMSPE and CCC values, fecal P excretion was best predicted by P intake, where P in feces (g/d)=-3.8(±3.45) + 0.64(±0.038) × P intake (g/d) (RMSPE: 18.3%, CCC: 0.869). However, significant effects of crude protein [g/kg of dry matter (DM)], neutral detergent fiber (g/kg of DM), and milk yield (kg/d) on fecal P excretion were also found. Despite a lack of improvement in terms of RMSPE and CCC values, these parameters may still explain part of the variation in fecal P excretion. For milk P, expressed as a fraction of P intake, the following equation had the highest CCC and the lowest RMSPE value: P in milk as a fraction of P intake (g/g)=0.42(±0.065) + 0.23(±0.018) × feed efficiency (i.e., fat- and protein-corrected milk yield/dry matter intake) - 0.11(±0.0199) × P in feed (g/kg of DM) (RMSPE: 19.7%; CCC: 0.761). Equations derived to predict fecal P as a fraction of P intake (g/g) or milk P content (g/kg) could not adequately explain the observed variation and did not perform well in terms of RMSPE and CCC values. Examination of the residuals showed that P balance was a seemingly confounding factor in some of the models. The results presented here can be used to estimate P in feces and milk based on commonly measured dietary and milk variables, but could also be used to guide development of mechanistic models on P metabolism in lactating dairy cattle. Factors to consider in future research and modeling efforts regarding efficiency of P use include the effects of dietary neutral detergent fiber, crude protein, starch, variation in P content of milk, and effects of P resorption from bone and body tissues during early lactation.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Bovinos/metabolismo , Lactancia/fisiología , Fósforo Dietético/farmacocinética , Animales , Teorema de Bayes , Fibras de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Digestión , Heces/química , Femenino , Leche/química , Fósforo/análisis , Fósforo Dietético/administración & dosificación , Fósforo Dietético/metabolismo
19.
J Dairy Sci ; 95(6): 3149-65, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22612951

RESUMEN

The aim of this experiment was to study the effects of feeding different linseed sources on omasal fatty acid (FA) flows, and plasma and milk FA profiles in dairy cows. Four ruminally cannulated lactating Holstein-Friesian cows were assigned to 4 dietary treatments in a 4×4 Latin square design. Dietary treatments consisted of supplementing crushed linseed (CL), extruded whole linseed (EL), formaldehyde-treated linseed oil (FL) and linseed oil in combination with marine algae rich in docosahexaenoic acid (DL). Each period in the Latin square design lasted 21 d, with the first 16 d for adaptation. Omasal flow was estimated by the omasal sampling technique using Cr-EDTA, Yb-acetate, and acid detergent lignin as digesta flow markers. The average DM intake was 20.6 ± 2.5 kg/d, C18:3n-3 intake was 341 ± 51 g/d, and milk yield was 32.0 ± 4.6 kg/d. Milk fat yield was lower for the DL treatment (0.96 kg/d) compared with the other linseed treatments (CL, 1.36 kg/d; EL, 1.49 kg/d; FL, 1.54 kg/d). Omasal flow of C18:3n-3 was higher and C18:3n-3 biohydrogenation was lower for the EL treatment (33.8 g/d; 90.9%) compared with the CL (21.8 g/d; 94.0%), FL (15.5 g/d; 95.4%), and DL (4.6 g/d; 98.5%) treatments, whereas whole-tract digestibility of crude fat was lower for the EL treatment (64.8%) compared with the CL (71.3%), FL (78.5%), and DL (80.4%) treatments. The proportion of C18:3n-3 (g/100 g of FA) was higher for the FL treatment compared with the other treatments in plasma triacylglycerols (FL, 3.60; CL, 1.22; EL, 1.35; DL, 1.12) and milk fat (FL, 3.19; CL, 0.87; EL, 0.83; DL, 0.46). Omasal flow and proportion of C18:0 in plasma and milk fat were lower, whereas omasal flow and proportions of biohydrogenation intermediates in plasma and milk fat were higher for the DL treatment compared with the other linseed treatments. The results demonstrate that feeding EL did not result in a higher C18:3n-3 proportion in plasma and milk fat despite the higher omasal C18:3n-3 flow. This was related to the decreased total-tract digestibility of crude fat. Feeding FL resulted in a higher C18:3n-3 proportion in plasma and milk fat, although the omasal C18:3n-3 flow was similar or lower than for the CL and EL treatment, respectively. Feeding DL inhibited biohydrogenation of trans-11,cis-15-C18:2 to C18:0, as indicated by the increased omasal flows and proportions of biohydrogenation intermediates in plasma and milk fat.


Asunto(s)
Alimentación Animal , Grasas/análisis , Ácidos Grasos/análisis , Lino , Leche/química , Omaso/fisiología , Alimentación Animal/análisis , Animales , Bovinos , Dieta/veterinaria , Ácidos Grasos/sangre , Femenino , Lactancia/fisiología , Omaso/metabolismo
20.
J Anim Sci ; 90(7): 2317-23, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22287674

RESUMEN

The objective of this study was to determine the effect of dietary nitrate on methane emission and rumen fermentation parameters in Nellore × Guzera (Bos indicus) beef cattle fed a sugarcane based diet. The experiment was conducted with 16 steers weighing 283 ± 49 kg (mean ± SD), 6 rumen cannulated and 10 intact steers, in a cross-over design. The animals were blocked according to BW and presence or absence of rumen cannula and randomly allocated to either the nitrate diet (22 g nitrate/kg DM) or the control diet made isonitrogenous by the addition of urea. The diets consisted of freshly chopped sugarcane and concentrate (60:40 on DM basis), fed as a mixed ration. A 16-d adaptation period was used to allow the rumen microbes to adapt to dietary nitrate. Methane emission was measured using the sulfur hexafluoride tracer technique. Dry matter intake (P = 0.09) tended to be less when nitrate was present in the diet compared with the control, 6.60 and 7.05 kg/d DMI, respectively. The daily methane production was reduced (P < 0.01) by 32% when steers were fed the nitrate diet (85 g/d) compared with the urea diet (125 g/d). Methane emission per kilogram DMI was 27% less (P < 0.01) on the nitrate diet (13.3 g methane/kg DMI) than on the control diet (18.2 g methane/kg DMI). Methane losses as a fraction of gross energy intake (GEI) were less (P < 0.01) on the nitrate diet (4.2% of GEI) than on the control diet (5.9% of GEI). Nitrate mitigated enteric methane production by 87% of the theoretical potential. The rumen fluid ammonia-nitrogen (NH(3)-N()) concentration was significantly greater (P < 0.05) for the nitrate diet. The total concentration of VFA was not affected (P = 0.61) by nitrate in the diet, while the proportion of acetic acid tended to be greater (P = 0.09), propionic acid less (P = 0.06) and acetate/propionate ratio tended to be greater (P = 0.06) for the nitrate diet. Dietary nitrate reduced enteric methane emission in beef cattle fed sugarcane based diet.


Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Dieta/veterinaria , Metano/metabolismo , Saccharum , Amoníaco/química , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Estudios Cruzados , Suplementos Dietéticos , Metano/química , Nitratos/química , Nitratos/farmacología , Rumen/fisiología , Hexafluoruro de Azufre , Urea/química , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA