Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Poult Sci ; 100(7): 101096, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34087700

RESUMEN

The aim of this study was to evaluate the effects of dietary phytosterol (PS) addition at different levels on growth performance, serum lipid, proinflammatory cytokines, intestinal morphology, and meat quality in broilers. A total of 600, 1-day-old male broilers were allocated into five groups with six replicates and were fed a basal diet supplemented with 0 (control group), 10, 20, 40, or 80 mg/kg PS for 42 days. Compared with the control group, the administration of PS at doses of 40 and 80 mg/kg significantly increased the average daily feed intake and average daily gain of broilers during the experimental period. Similarly, PS at a dosage of 20 and 40 mg/kg increased the concentrations of interleukin-1ß, interferon-γ, interleukin-2, and interleukin-6 but decreased triglyceride, total cholesterol, and low-density lipoprotein cholesterol content of serum (P < 0.05). Dietary PS at less than or equal to 40 mg/kg level increased (P < 0.05) villus height, and villus height to crypt depth ratio in the duodenum and ileum. Supplementing PS increased the pH value at 45 min post-mortem and decreased drip loss and shear force of breast muscle (P < 0.05). Dietary PS administration at 20 and 40 mg/kg decreased malondialdehyde accumulation but increased total antioxidant capacity and superoxide dismutase activity of breast muscle compared with the control group (P < 0.05). PS increased the concentrations of total amino acids and flavor amino acids as well as eicosapentaenoic acid, docosahexaenoic acid, and total polyunsaturated fatty acids but decreased saturated fatty acids in breast muscle (P < 0.05). It was concluded that dietary PS supplementation, especially at 40 mg/kg, could improve growth performance, serum lipid, proinflammatory cytokines, intestinal morphology, and meat quality in broilers, providing insights into its application as a potential feed additive in broiler production.


Asunto(s)
Pollos , Fitosteroles , Alimentación Animal/análisis , Animales , Antioxidantes , Citocinas , Dieta , Suplementos Dietéticos , Plumas , Masculino , Carne/análisis
2.
Animal ; 14(4): 790-798, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31650938

RESUMEN

Small intestinal epithelium homeostasis involves four principal cell types: enterocytes, goblet, enteroendocrine and Paneth cells. Epidermal growth factor (EGF) has been shown to affect enterocyte differentiation. This study determined the effect of dietary EGF on goblet, enteroendocrine and Paneth cell differentiation in piglet small intestine and potential mechanisms. Forty-two weaned piglets were used in a 2 × 3 factorial design; the major factors were time post-weaning (days 7 and 14) and dietary treatment (0, 200 or 400 µg/kg EGF supplementation). The numbers of goblet and enteroendocrine cells were generally greater with the increase in time post-weaning. Moreover, the supplementation of 200 µg/kg EGF increased (P < 0.01) the number of goblet and enteroendocrine cells in villus and crypt of the piglet small intestine as compared with the control. Dietary supplementation with 200 µg/kg EGF enhanced (P < 0.05) abundances of differentiation-related genes atonal homologue 1, mucin 2 and intestinal trefoil factor 3 messenger RNA (mRNA) as compared with the control. Piglets fed 200 or 400 µg/kg EGF diet had increased (P < 0.05) abundances of growth factor-independent 1, SAM pointed domain containing ETS transcription factor and pancreatic and duodenal homeobox 1 mRNA, but decreased the abundance (P < 0.01) of E74 like ETS transcription factor 3 mRNA as compared with the control. Animals receiving 400 µg/kg EGF diets had enhanced (P < 0.05) abundances of neurogenin3 and SRY-box containing gene 9 mRNA as compared with the control. The mRNA abundance and protein expression of lysozyme, a marker of Paneth cell, were also increased (P < 0.05) in those animals. As compared with the control, dietary supplementation with 200 µg/kg EGF increased the abundance of EGF receptor mRNA and the ratio of non-phospho(p)-ß-catenin/ß-catenin (P < 0.05) in villus epithelial cells at days 7 and 14. This ratio in crypt epithelial cells was higher (P < 0.05) on the both 200 and 400 µg/kg EGF groups during the same period. Our results demonstrated that dietary EGF stimulated goblet, enteroendocrine and Paneth cell differentiation in piglets during the post-weaning period, partly through EGFR and Wnt/ß-catenin signalling.


Asunto(s)
Suplementos Dietéticos/análisis , Factor de Crecimiento Epidérmico/administración & dosificación , Porcinos/fisiología , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Diferenciación Celular , Dieta/veterinaria , Enterocitos/fisiología , Células Epiteliales/fisiología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mucosa Intestinal/fisiología , Intestino Delgado/fisiología , ARN Mensajero/genética , Porcinos/genética , Destete , Proteínas Wnt/genética , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA