Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38581327

RESUMEN

Objective: This study aimed to explore the clinical application of aseptic skin repair dressing in facial dermatitis. Patients and Methods: A total of 80 patients with facial dermatitis admitted to Zhejiang Provincial People's Hospital from February 2020 to May 2021 were enrolled. And randomly assigned to the control group and study group, with 40 cases in each group. The control group received nicotinamide and narrow-band red light, while the study group received nicotinamide, narrow-band red light, and sterile skin repair dressing. The clinical efficacy, symptom score, erythema, transepidermal water loss (TEWL), and adverse reactions were compared after treatment. Results: After treatment, the study group exhibited significantly lower symptom scores, erythema amount, and TEWL value compared to the control group (P < .05). The clinical efficacy rate in the study group (97.5%) was significantly higher than that in the control group (82.5%) (P < .05). There was no statistically significant difference in the incidence of adverse reactions between the two groups (2.5% vs. 5%) (P > .05). Conclusion: Aseptic skin repair dressing, employed as an adjunctive therapy for facial dermatitis, demonstrates a noteworthy capacity to effectively mitigate parameters such as patient symptom scores, facial erythema quantity, and TEWL values. Notably, the application of this dressing does not pose an elevated risk of adverse reactions. These merits substantiate the superior therapeutic efficacy of aseptic skin repair dressing in facilitating the treatment of facial dermatitis.

2.
Reprod Sci ; 31(8): 2209-2218, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38366089

RESUMEN

Observational investigations recommend that mineral supplements were associated with a higher risk of polycystic ovary syndrome (PCOS) and its risk factors (insulin resistance, hyperandrogenism, and obesity), but the relationship with risk of PCOS, hyperandrogenism, obesity, and insulin resistance was unclear. This study was to investigate the potential causal impact of genetically predicted levels of magnesium (Mg), calcium (Ca), selenium (Se), zinc (Zn), iron (Fe), and omega-3 (ω-3) on polycystic ovary syndrome (PCOS) and its associated risk factors. A two-sample Mendelian randomization (MR) analysis was conducted. The genetic variations obtained from GWAS of individuals with European ancestry were found to be associated with the genetically predicted levels of Ca, Mg, Zn, Se, Fe, or ω-3. The data obtained from the FinnGen Consortium and MAGIC were utilized for the outcome of GWAS. The study found that there was a correlation between genetically predicted higher levels of Se and a reduced risk of insulin resistance, with a decrease of 2.2% according to random-effect IVW (OR 0.978, 95% CI 0.960-0.996, p = 0.015). The association between genetically determined mineral levels and PCOS was found to be limited, with an odds ratio (OR) ranging from 0.875 (95% CI: 0.637-1.202, p value = 0.411) for Ca. Limited scientific proof was found for the efficacy of other genetically determined mineral levels on hyperandrogenism, obesity, and insulin resistance. These findings suggested a causal relationship between genetically predicted higher levels of Se and a reduced risk of insulin resistance. Nonetheless, there is limited evidence supporting a causal association between various genetically determined mineral levels and the risk factors associated with PCOS.


Asunto(s)
Estudio de Asociación del Genoma Completo , Resistencia a la Insulina , Análisis de la Aleatorización Mendeliana , Minerales , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/epidemiología , Síndrome del Ovario Poliquístico/sangre , Humanos , Femenino , Minerales/metabolismo , Resistencia a la Insulina/genética , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Obesidad/genética , Obesidad/epidemiología
3.
Environ Sci Pollut Res Int ; 30(55): 117132-117142, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37864694

RESUMEN

The processes of acid in situ leaching (ISL) uranium (U) mines cause the pollution of groundwater. Phosphate (PO43-) has the potential to immobilize U in groundwater through forming highly insoluble phosphate minerals, but the performance is highly restricted by low pH and high sulfate concentration. In this study, hydrogen peroxide (H2O2) and PO43- were synergistically used for immobilizing U based on the specific properties of groundwater from a decommissioned acid ISL U mine. The removal mechanisms of U and the stability of U on the formed minerals were elucidated by employing X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and kinetic experiments. Our results indicated that the removal of U by simultaneously adding H2O2 and PO43- was significantly higher than the removal of U by individually adding H2O2 or PO43-. The removal of U increased with increasing PO43- concentration from 20 to 200 mg L-1 while decreased with increasing H2O2 concentration from 0.003 to 0.3%. Specifically, the removal efficiency of U from groundwater reached 98% after the application of 0.003% H2O2 and 200 mg L-1 PO43-. Amorphous iron phosphate that preferentially formed at low H2O2 and high PO43- concentrations played a dominant role in U removal, while the formations of schwertmannite and crystalline iron phosphates may be also contributed to the removal of U. This was significantly different from the immobilization mechanism of U through the formation of uranyl phosphate minerals after adding phosphate. The kinetic experimental results suggested that the immobilized U had a good stability. Our research may provide a promising method for in situ remediating U-contaminated groundwater at the decommissioned acid ISL U mines.


Asunto(s)
Agua Subterránea , Uranio , Peróxido de Hidrógeno , Uranio/química , Fosfatos/química , Minerales , Agua Subterránea/química , Hierro/química
4.
Chemosphere ; 344: 140346, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832890

RESUMEN

Petroleum hydrocarbon-contaminated groundwater often has a low indigenous microorganism population and lacks the necessary nutrient substrates for biodegradation reaction, resulting in a weak natural remediation ability within the groundwater ecosystem. In this paper, we utilized the principle of petroleum hydrocarbon degradation by microorganisms to identify effective nutrients (NaH2PO4, K2HPO4, NH4NO3, CaCl2, MgSO4·7H2O, FeSO4·7H2O, and VB12) and optimize nutrient substrate allocation through a combination of actual surveys of petroleum hydrocarbon-contaminated sites and microcosm experiments. Building on this, combining biostimulation and controlled-release technology, we developed a biodegradable chitosan-based encapsulated targeted biostimulant (i.e., YZ-1) characterized by easy uptake, good stability, controllable slow-release migration, and longevity to stimulate indigenous microflora in groundwater to efficiently degrade petroleum hydrocarbon. Results showed that YZ-1 extended the active duration of nutrient components by 5-6 times, with a sustainable release time exceeding 2 months. Under YZ-1 stimulation, microorganisms grew rapidly, increasing the degradation rate of petroleum hydrocarbon (10 mg L-1) by indigenous microorganisms from 43.03% to 79.80% within 7 d. YZ-1 can easily adapt to varying concentrations of petroleum hydrocarbon-contaminated groundwater. Specifically, in the range of 2-20 mg L-1 of petroleum hydrocarbon, the indigenous microflora was able to degrade 71.73-80.54% of the petroleum hydrocarbon within a mere 7 d. YZ-1 injection facilitated the delivery of nutrient components into the underground environment, improved the conversion ability of inorganic electron donors/receptors in the indigenous microbial community system, and strengthened the co-metabolism mechanism among microorganisms, achieving the goal of efficient petroleum hydrocarbon degradation.


Asunto(s)
Quitosano , Agua Subterránea , Microbiota , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos/metabolismo , Petróleo/metabolismo , Nutrientes , Microbiología del Suelo , Contaminantes del Suelo/análisis
5.
Chin J Nat Med ; 21(9): 643-657, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37777315

RESUMEN

Liver fibrosis is a pathological condition characterized by replacement of normal liver tissue with scar tissue, and also the leading cause of liver-related death worldwide. During the treatment of liver fibrosis, in addition to antiviral therapy or removal of inducers, there remains a lack of specific and effective treatment strategies. For thousands of years, Chinese herbal medicines (CHMs) have been widely used to treat liver fibrosis in clinical setting. CHMs are effective for liver fibrosis, though its mechanisms of action are unclear. In recent years, many studies have attempted to determine the possible mechanisms of action of CHMs in treating liver fibrosis. There have been substantial improvements in the experimental investigation of CHMs which have greatly promoted the understanding of anti-liver fibrosis mechanisms. In this review, the role of CHMs in the treatment of liver fibrosis is described, based on studies over the past decade, which has addressed the various mechanisms and signaling pathways that mediate therapeutic efficacy. Among them, inhibition of stellate cell activation is identified as the most common mechanism. This article provides insights into the research direction of CHMs, in order to expand its clinical application range and improve its effectiveness.


Asunto(s)
Medicamentos Herbarios Chinos , Hepatopatías , Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Fibrosis , Hepatopatías/tratamiento farmacológico , Resultado del Tratamiento , Cirrosis Hepática/tratamiento farmacológico
6.
Chemosphere ; 341: 140041, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37660796

RESUMEN

The dynamic reactions of uranium (U) with iron (Fe) minerals change its behaviors in soil environment, however, how the coexisted constituents in soil affect U sequestration and release on Fe minerals during the transformation remains unclear. Herein, coupled effects of lead (Pb) and dissolved organic matter (DOM) on U speciation and release kinetics during the catalytic transformations of ferrihydrite (Fh) by Fe(II) were investigated. Our results revealed that the coexistence of Pb and DOM significantly reduced U release and increased the immobilization of U during Fh transformation, which were attributed to the enhanced inhibition of Fh transformation, the declined release of DOM and the increased U(VI) reduction. Specifically, the presence of Pb increased the coprecipitation of condensed aromatics, polyphenols and phenols, and these molecules were preferentially maintained by Fe (oxyhydr)oxides. The sequestrated polyphenols and phenols could further facilitate U(VI) reduction to U(IV). Additionally, a higher Pb content in coprecipitates caused a slower U release, especially when DOM was present. Compared with Pb, the concentrations of the released U were significantly lower during the transformation. Our results contribute to predicting U sequestration and remediating U-contaminated soils.


Asunto(s)
Uranio , Plomo , Oxidación-Reducción , Compuestos Férricos , Minerales , Suelo , Fenoles
7.
World J Clin Cases ; 11(23): 5468-5478, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37637683

RESUMEN

BACKGROUND: Many epidemiologic investigations have explored the relationship between viatmins and polycystic ovary syndrome (PCOS). However, the effectiveness of vitamin, vitamin-like nutrient, or mineral supplementation in reducing the risk of PCOS remains a subject of debate. AIM: To investigate the impact of plasma levels of vitamins A, B12, D, E, and K on PCOS and key pathways implicated in its development, namely, insulin resistance, hyperlipidemia, and obesity, through Mendelian randomization (MR) analysis. METHODS: Single nucleotide polymorphisms associated with vitamin levels were selected from genome-wide association studies. The primary analysis was performed using the random-effects inverse-variance-weighted approach. Complementary analyses were conducted using the weighted median, MR-Egger, MR-robust adjusted profile score, and MR-PRESSO approaches. RESULTS: The results provided suggestive evidence of a decreased risk of PCOS with genetically predicted higher levels of vitamin E (odds ratio [OR] = 0.118; 95% confidence interval [CI]: 0.071-0.226; P < 0.001) and vitamin B12 (OR = 0.753, 95%CI: 0.568-0.998, P = 0.048). An association was observed between vitamin E levels and insulin resistance (OR = 0.977, 95%CI: 0.976-0.978, P < 0.001). Additionally, genetically predicted higher concentrations of vitamins E, D, and A were suggested to be associated with a decreased risk of hyperlipidemia. Increased vitamins K and B12 levels were linked to a lower obesity risk (OR = 0.917, 95%CI: 0.848-0.992, P = 0.031). CONCLUSION: The findings of this MR study suggest a causal relationship between increased vitamins A, D, E, K, and B12 levels and a reduced risk of PCOS or primary pathways implicated in its development.

8.
J Pers Med ; 13(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36983587

RESUMEN

The number of people suffering from diabetes in Taiwan has continued to rise in recent years. According to the statistics of the International Diabetes Federation, about 537 million people worldwide (10.5% of the global population) suffer from diabetes, and it is estimated that 643 million people will develop the condition (11.3% of the total population) by 2030. If this trend continues, the number will jump to 783 million (12.2%) by 2045. At present, the number of people with diabetes in Taiwan has reached 2.18 million, with an average of one in ten people suffering from the disease. In addition, according to the Bureau of National Health Insurance in Taiwan, the prevalence rate of diabetes among adults in Taiwan has reached 5% and is increasing each year. Diabetes can cause acute and chronic complications that can be fatal. Meanwhile, chronic complications can result in a variety of disabilities or organ decline. If holistic treatments and preventions are not provided to diabetic patients, it will lead to the consumption of more medical resources and a rapid decline in the quality of life of society as a whole. In this study, based on the outpatient examination data of a Taipei Municipal medical center, 15,000 women aged between 20 and 80 were selected as the subjects. These women were patients who had gone to the medical center during 2018-2020 and 2021-2022 with or without the diagnosis of diabetes. This study investigated eight different characteristics of the subjects, including the number of pregnancies, plasma glucose level, diastolic blood pressure, sebum thickness, insulin level, body mass index, diabetes pedigree function, and age. After sorting out the complete data of the patients, this study used Microsoft Machine Learning Studio to train the models of various kinds of neural networks, and the prediction results were used to compare the predictive ability of the various parameters for diabetes. Finally, this study found that after comparing the models using two-class logistic regression as well as the two-class neural network, two-class decision jungle, or two-class boosted decision tree for prediction, the best model was the two-class boosted decision tree, as its area under the curve could reach a score of 0.991, which was better than other models.

9.
Phytomedicine ; 111: 154658, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706698

RESUMEN

BACKGROUND: Wumei Wan (WMW) has been used to address digestive disorder for centuries in traditional Chinese medicine. Previous studies have demonstrated its anti-colitis efficacy, but the underlying mechanism of its action remains to be further clarified. PURPOSE: To investigate the underlying mechanisms of WMW in the treatment of chronic ulcerative colitis (UC) through network pharmacology and experimental validation. METHODS: Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform were used to identify the ingredients and potential targets of WMW. The microarray gene data GSE75214 datasets from GEO database was used to define UC-associated targets. Cytoscape3.7.2 was employed to construct the protein-protein interaction (PPI) network and compounds-disease targets network. GO enrichment analysis and KEGG pathway analysis were performed by R software for functional annotation. UPLC-TOF-MS/MS method was used to quantitatively analyze the active ingredients of WMW. For experimental validation, three cycles of 2% dextran sulfate sodium salt (DSS) were used to construct chronic colitis model. The hub targets and signal pathway were detected by qPCR, ELISA, western blotting , immunohistochemical and immunofluorescence. RESULTS: Through network analysis, 104 active ingredients were obtained from WMW, and 47 of these ingredients had potential targets for UC. A total of 41 potential targets of WMW and 13 hub targets were identified. KEGG analysis showed that WMW involved in advanced glycation end products-receptor of advanced glycation end products (AGE-RAGE) signaling pathway. Taxifolin, rutaecarpine, kaempferol, quercetin, and luteolin of WMW were the more highly predictive components related to the AGE-RAGE signaling pathway. In vivo validation, WMW improved DSS-induced colitis, reduced the expression of inflammatory cytokines and chemokines. Notably, it significantly decreased the mRNA expression of Spp1, Serpine1, Mmp2, Mmp9, Ptgs2, Nos2, Kdr and Icam1, which were associated with angiogenesis. In addition, we confirmed WMW inhibited RAGE expression and diminished DSS-induced epithelial barrier alterations CONCLUSION: Our results initially demonstrated the effective components and the strong anti-angiogenic activity of WMW in experimental chronic colitis. Sufficient evidence of the satisfactory anti-colitis action of WMW was verified in this study, suggesting its potential as a quite prospective agent for the therapy of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Medicamentos Herbarios Chinos , Humanos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Inflamación/tratamiento farmacológico , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red , Estudios Prospectivos , Transducción de Señal , Espectrometría de Masas en Tándem
10.
Water Res ; 229: 119387, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459895

RESUMEN

Amorphous ferrihydrite (Fh) is abundant in aquatic environments and sediments, and often coprecipitates with dissolved organic matter (DOM) to form mineral-organic aggregates. The Fe(II)-catalyzed transformation of Fh to crystalline Fe (oxyhydr)oxides (e.g., goethite) can result in the changes of uranium (U) species, but the effects of DOM molecules on the sequestration and stability of U during Fe (oxyhydr)oxides transformation are poorly understood. In this study, the associations of DOM molecules with U during the coprecipitation of DOM with Fh were evaluated, and the effects of DOM molecules on the kinetics of U release during Fe (oxyhydr)oxides transformation were investigated using a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), X-ray photoelectron spectroscopy (XPS), and kinetic experiments. FT-ICR-MS results indicated that, in addition to phenolic and polyphenolic compounds with higher O/C ratios, portions of phenolic compounds with lower O/C ratios and aliphatic compounds were also contributed to UO22+ binding when Fh coprecipitated with DOM. In comparison, phenolic and polyphenolic compounds with higher O/C ratios and condensed aromatics were preferentially retained on Fe (oxyhydr)oxides during the transformation. XPS results further suggested that the coprecipitated DOM molecules facilitated the reduction of U(VI) to U(IV) during the transformation, possibly through providing electrons or acting as electron shuttles. The kinetic experiment results indicated that the transformation processes accelerated U release from Fe (oxyhydr)oxides, but the coprecipitated DOM molecules slowed down U release. Our results contribute to understanding the behaviors of U and predicting the sequestration of U in the environment.


Asunto(s)
Óxidos , Uranio , Uranio/química , Materia Orgánica Disuelta , Oxidación-Reducción , Compuestos Férricos/química , Fenoles
11.
Nanoscale ; 14(37): 13740-13754, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36098072

RESUMEN

Polydopamine (PDA) is capable of wide drug delivery for biomedical applications by virtue of an adjustable polymerization process, including surface coating and conjugation. Inspired by the polymerization of dopamine, we introduce a layer-by-layer hybrid co-assembly strategy for the incorporation of doxorubicin (DOX) and dopamine to form PDA "carrier-drug" hybrid assembly. The "carrier-drug" hybrid assembly relies on the π-π stacking interaction between the drug (DOX) and carrier (PDA), and such the stacked-layer structure enables PDA nanoparticles with a superior drug loading of 58%, which is about 1.7-fold higher than that of the DOX surface coating (∼35%). To further improve blood circulation stability and enhance tumor penetration, we herein propose the conjugation of native apolipoprotein A-I (apoA-I) with tumor-homing cyclic peptide iRGD for PDA surface modification. The "carrier-drug" hybrid assembly can respond to triple stimuli of the acidic pH, concentrated reactive oxygen species (ROS), and near-infrared (NIR) light irradiation for realizing site-specific and on-demand drug release. In chemo-photothermal synergy therapy, the "carrier-drug" hybrid assembly performs efficient tumor penetration and accumulation, dramatically suppressing tumor growth and metastasis in a 4T1 orthotopic tumor-bearing mice model at a safe level. Collectively, our findings share new insights into the design of "carrier-drug" hybrid assembly for enhanced chemo-photothermal oncotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Apolipoproteína A-I , Línea Celular Tumoral , Dopamina , Doxorrubicina/química , Excipientes , Indoles , Ratones , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Péptidos Cíclicos , Fototerapia , Polímeros , Especies Reactivas de Oxígeno/metabolismo
12.
Nutrients ; 14(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36145052

RESUMEN

Background: Prostatitis-like symptoms (PLS) lead to severe discomfort in males in their daily lives. Diet has been established as affecting PLS in our prior study, but the effect of nutrients, particularly for micronutrients remains largely unclear. Methods: This study enrolled 1284 participants from August 2020 to March 2021. The National Institute of Health−Chronic Prostatitis Symptom Index was used to assess PLS. The diet composition was evaluated by the Chinese Food Composition Tables. Results: Participants were separated into PLS (n = 216), control (n = 432), and noninflammatory-abnormal symptoms (NIANS) (n = 608) groups. We observed higher levels of carotene, vitamin C, vitamin E-(ß+γ) and subclass, zinc, magnesium, selenium, potassium, sodium, iron and manganese in the PLS group than in the control group. After adjustment for the potential confounders, the elevated risk from IQR2 to IQR4 of fat (P for trend = 0.011), vitamin E-(ß+γ) (P for trend = 0.003), magnesium (P for trend = 0.004), sodium (P for trend = 0.001) and copper (P for trend < 0.001) was identified. Conclusions: This is the first study to evaluate the nutrient distribution in PLS patients and reveal that the higher intake of fat, vitamin E-(ß+γ), magnesium, sodium, and copper is associated with a risk of PLS.


Asunto(s)
Prostatitis , Selenio , Adulto , Ácido Ascórbico , Carotenoides , China , Cobre , Dieta , Ingestión de Energía , Humanos , Hierro , Magnesio , Masculino , Manganeso , Micronutrientes , Potasio , Sodio , Vitamina E , Zinc
13.
Pharmaceutics ; 14(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35890271

RESUMEN

Tumor phototherapies are light-mediated tumor treatment modalities, which usually refer to tumor photothermal therapy (PTT) and photodynamic therapy (PDT). Due to the outstanding spatial-temporal control over treatment through light irradiation, tumor phototherapies display extremely low side effects during treatment and are believed to be a tumor treatment method with a clinical translation potential. However, current tumor phototherapy nanoplatforms face obstacles, including light irradiation-induced skin burning, tumor hypoxia microenvironments, limited light penetration depth, et al. Therefore, one important research direction is developing a tumor phototherapy nanoplatform with multifunctionality and enhanced pharmacological effects to overcome the complexity of tumor treatment. On the other hand, cyclodextrins (CDs) are starch-originated circular oligosaccharides with negligible toxicity and have been used to form supermolecular nanostructures through a host-guest interaction between the inner cavity of CDs and functional biomolecules. In the past few years, numerous studies have focused on CD-based multifunctional tumor phototherapy nanoplatforms with an enhanced photoeffect, responsive morphological transformation, and elevated drug bioavailability. This review focuses on the preparation methods of CD-based tumor phototherapy nanoplatforms and their unique physiochemical properties for improving anti-tumor pharmacological efficacy.

14.
J Hazard Mater ; 436: 129298, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739799

RESUMEN

The interactions between dissolved organic matter (DOM) molecules and minerals play significant roles in affecting the fate of carbon and contaminants in soil environment. However, the mechanisms controlling the variations of DOM molecules distribution during the transformation of Fe (oxyhydr)oxides, and the effects of these variations on contaminant behaviors are still largely unknown. In this study, the dynamic variations of DOM properties and distributions, and the kinetics of uranium adsorption on and desorption from Fe (oxyhydr)oxides during the transformation were investigated, employing a combination of Orbitrap mass spectrometry (MS), high-resolution transmission electron microscopy (HR-TEM), and kinetic experiments. Orbitrap MS results indicated that aliphatic molecules and phenolic and polyphenolic molecules with lower O/C values were preferentially released to solution. HR-TEM results indicated that the coprecipitated DOM molecules by ferrihydrite were mainly released to solution rather than sorbed on the newly formed lepidocrocite or goethite during the transformation. Furthermore, the stirred-flow experiment results suggested that soil DOM significantly reduced the adsorption of uranium on, and accelerated the release of uranium from Fe (oxyhydr)oxides, which was ascribed to the changed distribution of DOM molecules and the structure and composition of Fe (oxyhydr)oxides. Our results contribute to predicting contaminant behaviors in soils.


Asunto(s)
Hierro , Uranio , Adsorción , Materia Orgánica Disuelta , Compuestos Férricos , Cinética , Minerales , Oxidación-Reducción , Óxidos/química , Suelo
15.
Sci Rep ; 12(1): 6495, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35444191

RESUMEN

This study aims to improve soil vapor extraction (SVE) to address its shortcomings in treating halogenated hydrocarbon-contaminated soil. Indoor simulation experiments based on SVE were conducted to provide technical guidance for the remediation of 1,2-DCA-contaminated soil, with the overall intention of soil repair and ecological restoration. A thermal oxidation SVE (TOSVE) system was designed on the basis of SVE technology for application in the remediation of low-permeability soil contaminated with halogenated hydrocarbons from a chemical plant in Northeast China. Laboratory simulation experiments were conducted based on TOSVE technology to study the removal of target pollutants under different organic contents, moisture and air speeds. For the first time, a new material, scoria, was added to the oxidant at different proportions, and its effect on the exhaust gas treatment efficiency was examined. Thermal extraction improved the extraction efficiency of pollutants from low-permeability soil. Moreover, the adsorption-oxidation effect of 0.1-0.25 mm scoria prepared by 20% Na2S2O8 on 1,2-dichloroethane (1,2-DCA) in tail gas was higher than that of the oxidant without scoria, indicating that scoria is effective in tail gas treatment.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Contaminantes del Suelo , Gases , Oxidantes , Suelo/química , Contaminantes del Suelo/análisis
16.
Mar Pollut Bull ; 179: 113665, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35489091

RESUMEN

Eutrophication is a global problem for coastal ecosystems, one that the Bohai Sea (BHS), China, is severely afflicted by due to rapid economic and social development over the last forty years. For sustainable nutrients management in the BHS, comprehensive budgets for Nitrogen (N) and Phosphorus (P) was characterized in 2017, and the relative contributions of river input, submarine fresh groundwater discharge, atmospheric deposition, sediment diffusion, and exchange with the Yellow Sea were quantified. The annual N and P fluxes into the BHS were 362 × 103 t and 10.4 × 103 t, respectively. The terrigenous N inputs occupied the highest proportion, while the largest P input was from sediment diffusion. The ratio of N:P was 77 for total external inputs, while that of the Yellow River was 680; both exceeded the Redfield ratio, indicating an imbalance in the nutrient structure and a P limitation in the BHS.


Asunto(s)
Nitrógeno , Fósforo , China , Ecosistema , Monitoreo del Ambiente , Actividades Humanas , Humanos , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Ríos/química
17.
Nano Lett ; 22(6): 2450-2460, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35271279

RESUMEN

The inflammatory dysfunction of microglia from excess amyloid-ß peptide (Aß) disposal is an overlooked but pathogenic event in Alzheimer's disease (AD). Here, we exploit a native high-density lipoprotein (HDL)-inspired nanoscavenger (pHDL/Cur-siBACE1) that combines the trinity of phosphatidic acid-functionalized HDL (pHDL), curcumin (Cur), and ß-site APP cleavage enzyme 1 targeted siRNA (siBACE1) to modulate microglial dysfunction. By mimicking the natural lipoprotein transport route, pHDL can penetrate the blood-brain barrier and sequentially target Aß plaque, where Aß catabolism is accelerated without microglial dysfunction. The benefit results are from a three-pronged modulation strategy, including promoted Aß clearance with an antibody-like Aß binding affinity, normalized microglial dysfunction by blocking the NF-κB pathway, and reduced Aß production by gene silence (44%). After treatment, the memory deficit and neuroinflammation of APPswe/PSEN 1dE9 mice are reversed. Collectively, this study highlights the double-edged sword role of microglia and provides a promising tactic for modulating microglial dysfunction in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Lipoproteínas HDL/metabolismo , Ratones , Ratones Transgénicos , Microglía/metabolismo , Enfermedades Neuroinflamatorias
18.
Bioact Mater ; 13: 286-299, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35224309

RESUMEN

Glioma is one of the most malignant primary tumors affecting the brain. The efficacy of therapeutics for glioma is seriously compromised by the restriction of blood-brain barrier (BBB), interstitial tumor pressure of resistance to chemotherapy/radiation, and the inevitable damage to normal brain tissues. Inspired by the natural structure and properties of high-density lipoprotein (HDL), a tumor-penetrating lipoprotein was prepared by the fusion tLyP-1 to apolipoprotein A-I-mimicking peptides (D4F), together with indocyanine green (ICG) incorporation and lipophilic small interfering RNA targeted HIF-1α (siHIF) surface anchor for site-specific photo-gene therapy. tLyP-1 peptide is fused to HDL-surface to facilitate BBB permeability, tumor-homing capacity and -site accumulation of photosensitizer and siRNA. Upon NIR light irradiation, ICG not only served as real-time targeted imaging agent, but also provided toxic reactive oxygen species and local hyperthermia for glioma phototherapy. The HIF-1α siRNA in this nanoplatform downregulated the hypoxia-induced HIF-1α level in tumor microenvironment and enhanced the photodynamic therapy against glioma. These studies demonstrated that the nanoparticles could not only efficiently across BBB and carry the payloads to orthotopic glioma, but also modulate tumor microenvironment, thereby inhibiting tumor growth with biosafety. Overall, this study develops a new multifunctional drug delivery system for glioma theranostic, providing deeper insights into orthotopic brain tumor imaging and treatment.

19.
J Ethnopharmacol ; 285: 114872, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838618

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal formulas have unique efficacy and are of great significance to the theory and practice of Chinese medicine and are therefore gaining increasing attention in research. Painong powder (PNS), composed of Aurantii fructus immaturus (Zhishi in Chinese, ZS), Paeoniae Radix Alba (Baishao in Chinese, BS), and Platycodonis Radix (Jiegeng in Chinese, JG), has remarkable effects on the detoxification and discharge of pus. JG is traditionally used to treat pulmonary carbuncles and is considered a 'medicinal guide'. According to the composition theory of prescriptions, JG is an 'assistant and guide' medicine. The role of JG as an adjuvant has gained increasing attention. AIM OF THE STUDY: The study was designed to prove the efficacy of PNS in ulcerative colitis (UC) and to study the role of JG in PNS via pharmacodynamic, pharmacokinetic, and tissue distribution analyses. MATERIALS AND METHODS: For the pharmacodynamic study, the UC rat model was induced using 5% trinitrobenzene sulfonic acid (TNBS). The results of the macroscopic characterization, histological analysis, and cytokine levels, including those of tumour necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and nuclear factor-kappa B (NF-κB), were integrated to evaluate the treatment of UC with PNS. In addition, an LC-MS/MS method was established and validated to analyze the blood pharmacokinetic parameters and tissue distribution of naringin and paeoniflorin. RESULTS: After the administration of high-dose PNS, the UC rats showed amelioration of macroscopic damage at the lesion site. The cytokine levels in the plasma, colon, and lung tissues were also decreased. The pharmacokinetic parameters showed that compared with UC rats administered with PNS-JG, those administered with PNS showed an increase in the AUC, MRT, and Tmax of naringin and paeoniflorin, and a decrease in their clearance rate. Furthermore, naringin and paeoniflorin had higher concentrations in the colon and lung tissues in the normal and model groups administered with PNS than in those administered with PNS-JG. CONCLUSIONS: PNS was shown to have marked therapeutic efficacy against TNBS-induced UC in rats. The effect of JG in PNS was reflected by the differences in the pharmacokinetic parameters and tissue distribution of the active components, providing valuable information for the clinical application of PNS in the treatment of UC. However, knowledge about how JG works as an adjuvant medicine in PNS is still lacking.


Asunto(s)
Campanulaceae , Colitis Ulcerosa , Medicamentos Herbarios Chinos , Fitoterapia , Animales , Ratas , Área Bajo la Curva , Campanulaceae/química , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Citocinas/genética , Citocinas/metabolismo , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Semivida , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Polvos , Ratas Sprague-Dawley , Distribución Tisular , Ácido Trinitrobencenosulfónico/toxicidad
20.
J Hazard Mater ; 426: 127786, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34810005

RESUMEN

In this study, humic-like substances (HLSs) was extracted from spent coffee grounds (SCGs), and it together with poly acrylic acid (PAA), was used for the first time to synthesize hydrogel material, namely HLSs/PAA gel, by one-step radical polymerization. Its maximum theoretical sorption capacity toward U(VI) at pH 3.00 was 661.01 mg/g, and it could decrease the concentration of U(VI) in acidic actual groundwater from 0.2537 to 0.0003 mg/L, showing that the gel had excellent U(VI) removal efficiency in acidic environment. The SEM characterization of HLSs/PAA gel showed that its macroporous network structure maintained well after the sorption process, indicating that the gel had excellent acid-resistant property. Moreover, the gel exhibited excellent anti-interference performance in the interfering ions effect experiment. The gel integrates the merits of excellent U(VI) sorption properties, stability and anti-interference performance in acidic environment, and has promising application prospects in the remediation of acidic uranium wastewater.


Asunto(s)
Hidrogeles , Uranio , Adsorción , Café , Sustancias Húmicas , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA