Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Elife ; 122024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38412016

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in Western countries. There is growing evidence that dysbiosis of the intestinal microbiota and disruption of microbiota-host interactions contribute to the pathology of NAFLD. We previously demonstrated that gut microbiota-derived tryptophan metabolite indole-3-acetate (I3A) was decreased in both cecum and liver of high-fat diet-fed mice and attenuated the expression of inflammatory cytokines in macrophages and Tnfa and fatty acid-induced inflammatory responses in an aryl-hydrocarbon receptor (AhR)-dependent manner in hepatocytes. In this study, we investigated the effect of orally administered I3A in a mouse model of diet-induced NAFLD. Western diet (WD)-fed mice given sugar water (SW) with I3A showed dramatically decreased serum ALT, hepatic triglycerides (TG), liver steatosis, hepatocyte ballooning, lobular inflammation, and hepatic production of inflammatory cytokines, compared to WD-fed mice given only SW. Metagenomic analysis show that I3A administration did not significantly modify the intestinal microbiome, suggesting that I3A's beneficial effects likely reflect the metabolite's direct actions on the liver. Administration of I3A partially reversed WD-induced alterations of liver metabolome and proteome, notably, decreasing expression of several enzymes in hepatic lipogenesis and ß-oxidation. Mechanistically, we also show that AMP-activated protein kinase (AMPK) mediates the anti-inflammatory effects of I3A in macrophages. The potency of I3A in alleviating liver steatosis and inflammation clearly demonstrates its potential as a therapeutic modality for preventing the progression of steatosis to non-alcoholic steatohepatitis (NASH).


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Inflamación , Dieta Occidental/efectos adversos , Citocinas , Suplementos Dietéticos , Acetatos , Indoles/farmacología
2.
Planta Med ; 88(13): 1132-1140, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34861701

RESUMEN

1,3,5-Tri-O-caffeoyl quinic acid is a caffeoylquinic acid derivative isolated from the roots of Arctium lappa L. Our previous studies have revealed that the ethyl acetate extract of the roots of A. lappa L. and the caffeoylquinic acids contained in it possess antioxidant properties, especially 1,3,5-tri-O-caffeoyl quinic acid. The present study aimed to investigate the protective effects of 1,3,5-tri-O-caffeoyl quinic acid against hydrogen peroxide-induced oxidative stress and explore the underlying mechanism. We found that 1,3,5-tri-O-caffeoyl quinic acid prevented the decline of cell viability and excessive release of lactate dehydrogenase induced by hydrogen peroxide. In addition, Hoechst 33 342 staining and Annexin V-PI double staining showed that 1,3,5-tri-O-caffeoyl quinic acid inhibited hydrogen peroxide-induced neuronal cell apoptosis. 1,3,5-Tri-O-caffeoyl quinic acid reduced the excessive production of intracellular reactive oxygen species, decreased the malondialdehyde content, and improved the activity of superoxide dismutase. Furthermore, 1,3,5-tri-O-caffeoyl quinic acid restored the loss of mitochondrial membrane potential in SH-SY5Y cells induced by hydrogen peroxide. 1,3,5-Tri-O-caffeoyl quinic acid downregulated the overexpression of proapoptotic proteins, including Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3 as well as promoted the expression of the antiapoptotic protein Bcl-2. Moreover, the phosphorylation of mitogen-activated protein kinases induced by hydrogen peroxide was inhibited by 1,3,5-tri-O-caffeoyl quinic acid. Pretreatment with 1,3,5-tri-O-caffeoyl quinic acid also promoted the activation of phosphorylated Akt. Taken together, these findings suggest that 1,3,5-tri-O-caffeoyl quinic acid exerts protective effects against hydrogen peroxide-induced neuronal apoptosis. In addition, inhibition of the mitogen-activated protein kinase signaling pathway and the activation of Akt are implicated in the antioxidant activity of 1,3,5-tri-O-caffeoyl quinic acid, giving new insight in searching for a compound with antioxidant activity for the treatment of oxidative stress-associated neurological diseases.


Asunto(s)
Peróxido de Hidrógeno , Neuroblastoma , Humanos , Ácido Quínico/farmacología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Caspasa 9/farmacología , Fosforilación , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Citocromos c/metabolismo , Citocromos c/farmacología , Anexina A5/metabolismo , Anexina A5/farmacología , Proteína X Asociada a bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Apoptosis , Transducción de Señal , Malondialdehído/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Superóxido Dismutasa/metabolismo , Lactato Deshidrogenasas/metabolismo
3.
J Ethnopharmacol ; 245: 112173, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31445129

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chloasma, senile plaques, vitiligo and other pigmentary disorders seriously affect patients' appearance and life quality. Medicinal plant is the product of long-term medical practice worldwide, with the advantages of outstanding curative properties and less side effects. Recently, research were made to explore the value of medicinal plants in the treatment of pigmentary disorders, and remarkable results were achieved. AIM OF THE REVIEW: This review outlines the current understanding of the role and potential mechanisms of medicinal plants (including active ingredients, extracts and prescriptions) in pigmentary disorders, especially Chinese medicinal plants, provides the preclinical evidence for the clinical benefits. This study hopes to provide comprehensive information and reliable basis for exploring new therapeutic strategies of plant drugs in the treatment of skin pigmented diseases. METHODS: The literature information was obtained from the scientific databases (up to Oct, 2017), mainly from the PubMed, Web of Science and CNKI databases, and was to identify the experimental studies on the regulating melanogenesis role of the active agents from herbal medicine and the involved mechanisms. The search keywords for such work included: "pigmentary" or "pigmentation", "melanogenesis", and "traditional Chinese medicine" or "Chinese herbal medicine", "herb", "medicinal plant". RESULTS: We summarized the function of medicinal plants involved in melanogenesis, especially Chinese medicine. It was reported that the active ingredients, extracts, or prescriptions of medicinal plants can regulate the expression of genes related to melanogenesis by affecting the signaling pathways such as MAPK and PKA, thereby regulating pigment synthesis. Some of them can promote melanogenesis (such as isoliquiritigenin, geniposide; Cornus officinalis Siebold & Zucc., Eclipta prostrata (L.) L.; the Bairesi complex prescription, etc.). While others have the opposite effect (such as biochanin A, Gomisin N; Panax ginseng C.A. Meyer, Nardostachys chinensis Bat.; Sanbaitang, etc.). CONCLUSION: Asian medicinal plants, especially their active ingredients, have multilevel effects on melanogenesis by regulating melanogenesis-related genes or signaling pathways. They are of great clinical value for the treatment of skin pigmentary disorders. However, the experimental effect, safety, and functional mechanism of the medicinal plants require further determination before studying their clinical efficacy.


Asunto(s)
Melaninas/metabolismo , Trastornos de la Pigmentación/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Plantas Medicinales , Animales , Asia , Humanos , Fitoterapia , Trastornos de la Pigmentación/metabolismo
4.
J Cell Physiol ; 234(12): 22799-22808, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31115052

RESUMEN

Our previous study found that Ganoderma lucidum polysaccharide (GLP), bioactive ingredients from Ganoderma lucidum, protected fibroblasts from photoaging. However, whether GLP can affect melanogenesis in melanocytes through regulating paracrine mediators that secreted by keratinocytes and fibroblasts is unclear. We aimed to investigate the efficacy and mechanisms of action of GLP in melanogenesis by regulating paracrine effects of keratinocytes and fibroblasts. The effect of GLP on cell viability affected by GLP was measured by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. After an immortal keratinocyte line (HaCaT) and primary fibroblasts (FB) were treated with GLP, the supernatants of HaCaT and FB cells were collected and cocultured with an immortalized melanocyte line (PIG1). The expression levels of melanogenesis-associated genes in PIG1 cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. Furthermore, FRS-2, ERK, JNK, and p38 phosphorylation levels were measured. Then, major melanogenic paracrine mediators in HaCaT and FB cells treated with GLP were evaluated by qRT-PCR and enzyme-linked immunosorbent assay (ELISA). In addition, the expression of IL-6 and STAT3 was examined in HaCaT and FB cells. GLP was not cytotoxic to HaCaT and FB cells. The supernatants of GLP-treated HaCaT and FB cells downregulated the expression levels of MITF, TYR, TYRP1, TYRP2, RAB27A, and FSCN1 genes and inhibited the phosphorylation of FRS-2, ERK, JNK, and p38 in PIG1 cells. GLP also decreased FGF2 secretion in HaCaT and FB cells. Moreover, GLP reduced IL-6 expression and STAT3 phosphorylation in HaCaT and FB cells. GLP reduced melanogenesis in melanocytes by inhibiting the paracrine effects of keratinocytes and fibroblasts via IL-6/STAT3/FGF2 pathway.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Interleucina-6/metabolismo , Queratinocitos/efectos de los fármacos , Melaninas/biosíntesis , Melanocitos/efectos de los fármacos , Comunicación Paracrina/efectos de los fármacos , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Reishi , Factor de Transcripción STAT3/metabolismo , Preparaciones para Aclaramiento de la Piel/farmacología , Pigmentación de la Piel/efectos de los fármacos , Línea Celular , Técnicas de Cocultivo , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Queratinocitos/metabolismo , Melanocitos/metabolismo , Fosforilación , Extractos Vegetales/aislamiento & purificación , Polisacáridos/aislamiento & purificación , Reishi/química , Transducción de Señal , Preparaciones para Aclaramiento de la Piel/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA