Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mediators Inflamm ; 2021: 6652791, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557056

RESUMEN

Thymus and Activation-Regulated Chemokine (TARC/CCL17) and Macrophage-Derived Chemokine (MDC/CCL22) are two key chemokines exerting their biological effect via binding and activating a common receptor CCR4, expressed at the surface of type 2 helper T (Th2) cells. By recruiting Th2 cells in the dermis, CCL17 and CCL22 promote the development of inflammation in atopic skin. The aim of this research was to develop a plant extract whose biological properties, when applied topically, could be beneficial for people with atopic-prone skin. The strategy which was followed consisted in identifying ligands able to neutralize the biological activity of CCL17 and CCL22. Thus, an in silico molecular modeling and a generic screening assay were developed to screen natural molecules binding and blocking these two chemokines. N-Feruloylserotonin was identified as a neutraligand of CCL22 in these experiments. A cornflower extract containing N-feruloylserotonin was selected for further in vitro tests: the gene expression modulation of inflammation biomarkers induced by CCL17 or CCL22 in the presence or absence of this extract was assessed in the HaCaT keratinocyte cell line. Additionally, the same cornflower extract in another vehicle was evaluated in parallel with N-feruloylserotonin for cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzymatic cellular inhibition. The cornflower extract was shown to neutralize the two chemokines in vitro, inhibited COX-2 and 5-LOX, and demonstrated anti-inflammatory activities due mainly to the presence of N-feruloylserotonin. Although these findings would need to be confirmed in an in vivo study, the in vitro studies lay the foundation to explain the benefits of the cornflower extract when applied topically to individuals with atopic-prone skin.


Asunto(s)
Antiinflamatorios/farmacología , Quimiocina CCL17/antagonistas & inhibidores , Quimiocina CCL22/antagonistas & inhibidores , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Extractos Vegetales/farmacología , Serotonina/análogos & derivados , Piel/efectos de los fármacos , Zea mays/química , Células Cultivadas , Quimiocina CCL17/química , Quimiocina CCL22/química , Humanos , Simulación del Acoplamiento Molecular , Extractos Vegetales/análisis , Serotonina/química , Serotonina/farmacología
2.
Sci Rep ; 11(1): 2591, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510370

RESUMEN

Neutrophil gelatinase-associated lipocalin (NGAL) is involved in cardiovascular and renal diseases. Gene inactivation of NGAL blunts the pathophysiological consequences of cardiovascular and renal damage. We aimed to design chemical NGAL inhibitors and investigate its effects in experimental models of myocardial infarction (MI) and chronic kidney disease induced by 5/6 nephrectomy (CKD) on respectively 8-12 weeks old C57Bl6/j and FVB/N male mice. Among the 32 NGAL inhibitors tested, GPZ614741 and GPZ058225 fully blocked NGAL-induced inflammatory and profibrotic markers in human cardiac fibroblasts and primary mouse kidney fibroblasts. The administration of GPZ614741 (100 mg/kg/day) for three months, was able to improve cardiac function in MI mice and reduced myocardial fibrosis and inflammation. The administration of GPZ614741 (100 mg/kg/day) for two months resulting to no renal function improvement but prevented the increase in blood pressure, renal tubulointerstitial fibrosis and profibrotic marker expression in CKD mice. In conclusion, we have identified new compounds with potent inhibitory activity on NGAL-profibrotic and pro-inflammatory effects. GPZ614741 prevented interstitial fibrosis and dysfunction associated with MI, as well as tubulointerstitial fibrosis in a CKD model. These inhibitors could be used for other diseases that involve NGAL, such as cancer or metabolic diseases, creating new therapeutic options.


Asunto(s)
Lipocalina 2/antagonistas & inhibidores , Lipocalina 2/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Animales , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Masculino , Ratones
3.
Planta Med ; 81(6): 436-49, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25714727

RESUMEN

Nature was and still is a prolific source of inspiration in pharmacy, cosmetics, and agro-food industries for the discovery of bioactive products. Informatics is now present in most human activities. Research in natural products is no exception. In silico tools may help in numerous cases when studying natural substances: in pharmacognosy, to store and structure the large and increasing number of data, and to facilitate or accelerate the analysis of natural products in regards to traditional uses of natural resources; in drug discovery, to rationally design libraries for screening natural compound mimetics and identification of biological activities for natural products. Here we review different aspects of in silico approaches applied to the research and development of bioactive substances and give examples of using nature-inspiring power and ultimately valorize biodiversity.


Asunto(s)
Biodiversidad , Minería de Datos , Descubrimiento de Drogas , Productos Biológicos , Simulación por Computador
4.
Clin Interv Aging ; 7: 351-61, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049247

RESUMEN

In men, the level of testosterone decreases with age. At the skin level, the result is observed as a decrease in density and in a lower elasticity. Identifying compounds that are able to increase the level of testosterone appears to be an attractive strategy to develop new antiaging bioactive ingredients for men. Reverse pharmacognosy was successfully applied to identify new natural compounds able to modulate testosterone levels. Among several in silico hits, honokiol was retained as a candidate as it has the greatest potential to become an active ingredient. This result was then validated in vitro on aromatase and 5-alpha-reductase type 1 and 2, which are two types of enzymes implicated in the degradation of free testosterone. Indeed, honokiol was identified as an inhibitor of aromatase, with a half-maximal inhibitory concentration (IC(50)) of about 50 µM. In addition, honokiol was shown to be an inhibitor of 5-alpha-reductase type 1, with an IC(50) of about 75 µM. Taken together, these data indicate that honokiol modulates testosterone levels, and its structure has the potential to serve as a lead for future designs of highly selective inhibitors of 5-alpha-reductase type 1.


Asunto(s)
Compuestos de Bifenilo/farmacología , Inhibidores Enzimáticos/farmacología , Lignanos/farmacología , Envejecimiento de la Piel/fisiología , Testosterona/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Animales , Aromatasa/metabolismo , Compuestos de Bifenilo/química , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Inhibidores Enzimáticos/química , Humanos , Lignanos/química , Magnolia , Masculino , Persona de Mediana Edad , Relación Estructura-Actividad
5.
Planta Med ; 73(12): 1235-40, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17853346

RESUMEN

Reverse pharmacognosy aims at finding biological targets for natural compounds by virtual or real screening and identifying natural resources that contain the active molecules. We report herein a study focused on the identification of biological properties of meranzin, a major component isolated from Limnocitrus littoralis (Miq.) Swingle. Selnergy, an IN SILICO biological profiling software, was used to identify putative binding targets of meranzin. Among the 400 screened proteins, 3 targets were selected: COX1, COX2 and PPARgamma. Binding tests were realised for these 3 protein candidates, as well as two negative controls. The predictions made by Selnergy were consistent with the experimental results, meaning that these 3 targets can be modulated by an extract containing this compound in a suitable concentration. These results demonstrate that reverse pharmacognosy and its inverse docking component is a powerful tool to identify biological properties for natural molecules and hence for plants containing these compounds.


Asunto(s)
Cumarinas/metabolismo , Farmacognosia , Mapeo de Interacción de Proteínas , Rutaceae/química , Cumarinas/química , Cumarinas/aislamiento & purificación , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Compuestos Epoxi/química , Compuestos Epoxi/aislamiento & purificación , Compuestos Epoxi/metabolismo , Estructura Molecular , PPAR gamma/metabolismo
6.
Curr Drug Discov Technol ; 2(3): 161-7, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16472225

RESUMEN

The aim of reverse pharmacognosy is to find new biological targets for natural compounds by virtual or real screening and identify natural resources that contain the active molecules. To demonstrate the applicability of this concept, we report here a study on epsilon-viniferin, an active ingredient for cosmetic development. Nevertheless, this natural substance is weakly defined in terms of biological properties. SELNERGY, an inverse docking computer software, was used to identify putative binding biological targets for epsilon-viniferin. Among the 400 screened proteins two targets were retained. For cosmetic application, cyclic nucleotide phosphodiesterase 4 (PDE4) was the most interesting candidate. Moreover, other PDE subtypes (1, 2, 3, 5 and 6) were not retained, indicating a selectivity for PDE4. The experimental binding tests on the 6 subtypes of PDE revealed a significant selectivity of epsilon-viniferin for the PDE4 subtype. This selectivity was confirmed by evaluation of epsilon-viniferin on the secretion of TNF-alpha and Interleukin-8. Our data demonstrated that epsilon-viniferin possesses anti-inflammatory properties by inhibiting PDE4 subtype. In conclusion, reverse pharmacognosy and its inverse docking component cannot only be integrated into a program for new lead discovery but is also a useful approach to find new applications for identified compounds.


Asunto(s)
Diseño de Fármacos , Farmacognosia , Programas Informáticos , Benzofuranos/farmacología , Humanos , Interleucina-8/metabolismo , Queratinocitos/metabolismo , Leucocitos Mononucleares/metabolismo , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/metabolismo , Estilbenos/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
7.
IDrugs ; 7(11): 1017-27, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15551177

RESUMEN

Combinatorial chemistry and high-throughput screening (HTS) have led to the identification of numerous agents that are active and selective in vitro. Identifying drugs that are active in vivo, however, remains a challenge. Traditional medicinal cures based on natural materials have proven useful for many populations worldwide, representing huge and disperse tracts of knowledge that are sometimes neglected in Western research due to differences in the concepts of illness. In this review we introduce a new approach, termed 'reverse pharmacognosy' (from diverse molecules to plants), which can be coupled with pharmacognosy (from biodiverse plants to molecules). Reverse pharmacognosy utilizes new techniques, such as HTS, virtual screening and a knowledge database containing the traditional uses of plants. Integrating pharmacognosy and reverse pharmacognosy in the research process may provide an efficient and rapid tool for natural drug discovery.


Asunto(s)
Factores Biológicos/química , Farmacognosia/tendencias , Farmacología/tendencias , Animales , Factores Biológicos/farmacología , Factores Biológicos/uso terapéutico , Diseño de Fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA