Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804141

RESUMEN

In this work, a green extraction technique, subcritical water extraction (SBWE), was employed to extract active pharmaceutical ingredients (APIs) from an important Chinese medicinal herb, Salvia miltiorrhiza (danshen), at various temperatures. The APIs included tanshinone I, tanshinone IIA, protocatechualdehyde, caffeic acid, and ferulic acid. Traditional herbal decoction (THD) of Salvia miltiorrhiza was also carried out for comparison purposes. Reproduction assay of herbal extracts obtained by both SBWE and THD were then conducted on Caenorhabditis elegans so that SBWE conditions could be optimized for the purpose of developing efficacious herbal medicine from Salvia miltiorrhiza. The extraction efficiency was mostly enhanced with increasing extraction temperature. The quantity of tanshinone I in the herbal extract obtained by SBWE at 150 °C was 370-fold higher than that achieved by THD extraction. Reproduction evaluation revealed that the worm reproduction rate decreased and the reproduction inhibition rate increased with elevated SBWE temperatures. Most importantly, the reproduction inhibition rate of the SBWE herbal extracts obtained at all four temperatures investigated was higher than that of traditional herbal decoction extracts. The results of this work show that there are several benefits of subcritical water extraction of medicinal herbs over other existing herbal medicine preparation techniques. Compared to THD, the thousand-year-old and yet still popular herbal preparation method used in herbal medicine, subcritical water extraction is conducted in a closed system where no loss of volatile active pharmaceutical ingredients occurs, although analyte degradation may happen at higher temperatures. Temperature optimization in SBWE makes it possible to be more efficient in extracting APIs from medicinal herbs than the THD method. Compared to other industrial processes of producing herbal medicine, subcritical water extraction eliminates toxic organic solvents. Thus, subcritical water extraction is not only environmentally friendly but also produces safer herbal medicine for patients.


Asunto(s)
Extractos Vegetales/química , Salvia miltiorrhiza/química , Agua/química , Abietanos/química , Benzaldehídos/química , Ácidos Cafeicos/química , Catecoles/química , Ácidos Cumáricos/química , Medicamentos Herbarios Chinos/química , Calor , Plantas Medicinales/química
2.
Molecules ; 25(5)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120972

RESUMEN

In order to facilitate the development of the green subcritical water chromatography technique for vanillin and coumarin, the stability of the compounds under subcritical water conditions was investigated in this work. In addition, their extraction from natural products was also studied. The stability experiments were carried out by heating the mixtures of vanillin and water or coumarin and water at temperatures ranging from 100 °C to 250 °C, while subcritical water extractions (SBWE) of both analytes from vanilla beans and whole tonka beans were conducted at 100 °C to 200 °C. Analyte quantification for both stability and extraction studies was carried out by HPLC. After heating for 60 min, vanillin was found to be stable in water at temperatures up to 250 °C. While coumarin is also stable at lower temperatures such as 100 °C and 150 °C, it undergoes partial degradation after heating for 60 min at 200 °C and higher. The results of this stability study support green subcritical water chromatographic separation and extraction of vanillin and coumarin at temperatures up to 150 °C. The SBWE results revealed that the extraction efficiency of both analytes from vanilla beans and tonka beans is significantly improved with increasing temperature.


Asunto(s)
Benzaldehídos/química , Cromatografía Líquida de Alta Presión/métodos , Cumarinas/química , Extractos Vegetales/química , Agua/química , Benzaldehídos/análisis , Benzaldehídos/aislamiento & purificación , Cumarinas/análisis , Cumarinas/aislamiento & purificación , Calor , Sonicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA