Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(10): 12735-12749, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36854044

RESUMEN

Periodontitis is a ubiquitous chronic inflammatory, bacteria-triggered oral disease affecting the adult population. If left untreated, periodontitis can lead to severe tissue destruction, eventually resulting in tooth loss. Despite previous efforts in clinically managing the disease, therapeutic strategies are still lacking. Herein, melt electrowriting (MEW) is utilized to develop a compositionally and structurally tailored graded scaffold for regeneration of the periodontal ligament-to-bone interface. The composite scaffolds, consisting of fibers of polycaprolactone (PCL) and fibers of PCL-containing magnesium phosphate (MgP) were fabricated using MEW. To maximize the bond between bone (MgP) and ligament (PCL) regions, we evaluated two different fiber architectures in the interface area. These were a crosshatch pattern at a 0/90° angle and a random pattern. MgP fibrous scaffolds were able to promote in vitro bone formation even in culture media devoid of osteogenic supplements. Mechanical properties after MgP incorporation resulted in an increase of the elastic modulus and yield stress of the scaffolds, and fiber orientation in the interfacial zone affected the interfacial toughness. Composite graded MEW scaffolds enhanced bone fill when they were implanted in an in vivo periodontal fenestration defect model in rats. The presence of an interfacial zone allows coordinated regeneration of multitissues, as indicated by higher expression of bone, ligament, and cementoblastic markers compared to empty defects. Collectively, MEW-fabricated scaffolds having compositionally and structurally tailored zones exhibit a good mimicry of the periodontal complex, with excellent regenerative capacity and great potential as a defect-specific treatment strategy.


Asunto(s)
Ligamento Periodontal , Periodontitis , Ratas , Animales , Andamios del Tejido/química , Huesos , Osteogénesis , Poliésteres/química , Periodontitis/terapia , Ingeniería de Tejidos/métodos , Regeneración Ósea
2.
Biomaterials ; 261: 120302, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932172

RESUMEN

One of the important challenges in bone tissue engineering is the development of biodegradable bone substitutes with appropriate mechanical and biological properties for the treatment of larger defects and those with complex shapes. Recently, magnesium phosphate (MgP) doped with biologically active ions like strontium (Sr2+) have shown to significantly enhance bone formation when compared with the standard calcium phosphate-based ceramics. However, such materials can hardly be shaped into large and complex geometries and more importantly lack the adequate mechanical properties for the treatment of load-bearing bone defects. In this study, we have fabricated bone implants through extrusion assisted three-dimensional (3D) printing of MgP ceramics modified with Sr2+ ions (MgPSr) and a medical-grade polycaprolactone (PCL) polymer phase. MgPSr with 30 wt% PCL (MgPSr-PCL30) allowed the printability of relevant size structures (>780 mm3) at room temperature with an interconnected macroporosity of approximately 40%. The printing resulted in implants with a compressive strength of 4.3 MPa, which were able to support up to 50 cycles of loading without plastic deformation. Notably, MgPSr-PCL30 scaffolds were able to promote in vitro bone formation in medium without the supplementation with osteo-inducing components. In addition, long-term in vivo performance of the 3D printed scaffolds was investigated in an equine tuber coxae model over 6 months. The micro-CT and histological analysis showed that implantation of MgPSr-PCL30 induced bone regeneration, while no bone formation was observed in the empty defects. Overall, the novel polymer-modified MgP ceramic material and extrusion-based 3D printing process presented here greatly improved the shape ability and load-bearing properties of MgP-based ceramics with simultaneous induction of new bone formation.


Asunto(s)
Compuestos de Magnesio , Andamios del Tejido , Animales , Regeneración Ósea , Caballos , Fosfatos , Porosidad , Impresión Tridimensional , Ingeniería de Tejidos
3.
Expert Opin Biol Ther ; 19(8): 773-779, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31009588

RESUMEN

INTRODUCTION: Biomaterials have provided a wide range of exciting opportunities in tissue engineering and regenerative medicine. Gelatin, a collagen-derived natural biopolymer, has been extensively used in regenerative medicine applications over the years, due to its cell-responsive properties and the capacity to deliver a wide range of biomolecules. AREAS COVERED: The most relevant properties of gelatin as biomaterial are presented together with its main therapeutic applications. The latter includes drug delivery systems, tissue engineering approaches, potential uses as ink for 3D/4D Bioprinting, and its relevance in organ-on-a-chip platforms. EXPERT OPINION: Advances in polymer chemistry, mechanobiology, imaging technologies, and 3D biofabrication techniques have expanded the application of gelatin in multiple biomedical research applications ranging from bone and cartilage tissue engineering, to wound healing and anti-cancer therapy. Here, we highlight the latest advances in gelatin-based approaches within the fields of biomaterial-based drug delivery and tissue engineering together with some of the most relevant challenges and limitations.


Asunto(s)
Materiales Biocompatibles/química , Terapia Biológica/instrumentación , Gelatina/química , Animales , Terapia Biológica/métodos , Terapia Biológica/tendencias , Humanos , Medicina Regenerativa/instrumentación , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias
4.
ACS Appl Mater Interfaces ; 11(13): 12283-12297, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30864429

RESUMEN

The emergence of nontoxic, eco-friendly, and biocompatible polymers derived from natural sources has added a new and exciting dimension to the development of low-cost and scalable biomaterials for tissue engineering applications. Here, we have developed a mechanically strong and durable hydrogel composed of an eco-friendly biopolymer that exists within the cell walls of fruits and plants. Its trade name is pectin, and it bears many similarities with natural polysaccharides in the native extracellular matrix. Specifically, we have employed a new pathway to transform pectin into a ultraviolet (UV)-cross-linkable pectin methacrylate (PEMA) polymer. To endow this hydrogel matrix with cell differentiation and cell spreading properties, we have also incorporated thiolated gelatin into the system. Notably, we were able to fine-tune the compressive modulus of this hydrogel in the range ∼0.5 to ∼24 kPa: advantageously, our results demonstrated that the hydrogels can support growth and viability for a wide range of three-dimensionally (3D) encapsulated cells that include muscle progenitor (C2C12), neural progenitor (PC12), and human mesenchymal stem cells (hMSCs). Our results also indicate that PEMA-gelatin-encapsulated hMSCs can facilitate the formation of bonelike apatite after 5 weeks in culture. Finally, we have demonstrated that PEMA-gelatin can yield micropatterned cell-laden 3D constructs through UV light-assisted lithography. The simplicity, scalability, processability, tunability, bioactivity, and low-cost features of this new hydrogel system highlight its potential as a stem cell carrier that is capable of bridging the gap between clinic and laboratory.


Asunto(s)
Materiales Biocompatibles , Células Inmovilizadas , Gelatina , Hidrogeles , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas , Metacrilatos , Pectinas , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Inmovilizadas/citología , Células Inmovilizadas/metabolismo , Células Inmovilizadas/trasplante , Matriz Extracelular/química , Gelatina/química , Gelatina/farmacología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Metacrilatos/química , Metacrilatos/farmacología , Células PC12 , Pectinas/química , Pectinas/farmacología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA